Abstract
Supercapacitors are promising energy storage and power output technologies due to their improved energy density, rapid charge-discharge cycle, high cycle efficiency and long cycle life. Free standing poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate)/single walled nanotube films have been characterised by scanning electron microscopy, Raman spectroscopy and thermo-gravimetric analysis to understand the physical properties of the films. Films with varying compositions of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) and single walled nanotubes were compared by electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge/discharge to understand their electrochemical properties. A comparison of the results shows that having single walled nanotubes dispersed throughout the polymer matrix increase the capacitance by 65% and the energy density by a factor of 3 whilst achieving good capacity retention over 1000 cycles.
Original language | English |
---|---|
Pages (from-to) | 15987-15994 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry |
Volume | 21 |
Issue number | 40 |
DOIs | |
Publication status | Published - 28 Oct 2011 |
Externally published | Yes |