Composites of mesoporous silica precipitated on nanofibrillated cellulose and microfibrillated cellulose: effect of fibre diameter and reaction conditions on particle size and mesopore diameter

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)

Abstract

Composites of MSNs (mesoporous silica nanoparticles) with nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) were synthesized via in-situ precipitation. Controlling particle size distribution (PSD), pore diameter, and pore volume of mesoporous silica nanoparticles (MSNs) by cellulose nanofiber size has been investigated. In-situ precipitation on the 19 nm median diameter of NFC fibres produces MSNs in the diameter range 20–30 nm, the smallest MSN size reported. MSNs precipitated on MFC fibres with a 26 nm median diameter are 37% larger with broader size distribution, larger mesopore diameters, and lower specific surface area. The pore volume of MFC-MSNs composite was due to internal mesopores of MSNs and among particles and fibres, while it was primarily because of mesopores within MSNs in NFC-MSNs composite. Particle diameters were unaffected by varying the molar ratio of cellulose: TEOS (tetraethoxysilane) and reaction time. The reaction was mostly complete within only 10 min. The best NFC-MSN composite displayed a specific surface area of 567 m2/g with a saturated adsorption capacity of 134 mg/g of methylene blue (MB).

Original languageEnglish
Article number110701
Number of pages12
JournalMicroporous and Mesoporous Materials
Volume311
DOIs
Publication statusPublished - Feb 2021

Keywords

  • Aerogel
  • Composite
  • Mesoporous silica
  • Microfibrillated cellulose
  • Nanofibrillated cellulose
  • Pore
  • S

Cite this