TY - JOUR
T1 - Complete defense framework to protect Deep Neural Networks against adversarial examples
AU - Sun, Guangling
AU - Su, Yuying
AU - Qin, Chuan
AU - Xu, Wenbo
AU - Lu, Xiaofeng
AU - Ceglowski, Andrzej
PY - 2020
Y1 - 2020
N2 - Although Deep Neural Networks (DNNs) have achieved great success on various applications, investigations have increasingly shown DNNs to be highly vulnerable when adversarial examples are used as input. Here, we present a comprehensive defense framework to protect DNNs against adversarial examples. First, we present statistical and minor alteration detectors to filter out adversarial examples contaminated by noticeable and unnoticeable perturbations, respectively. Then, we ensemble the detectors, a deep Residual Generative Network (ResGN), and an adversarially trained targeted network, to construct a complete defense framework. In this framework, the ResGN is our previously proposed network which is used to remove adversarial perturbations, and the adversarially trained targeted network is a network that is learned through adversarial training. Specifically, once the detectors determine an input example to be adversarial, it is cleaned by ResGN and then classified by the adversarially trained targeted network; otherwise, it is directly classified by this network. We empirically evaluate the proposed complete defense on ImageNet dataset. The results confirm the robustness against current representative attacking methods including fast gradient sign method, randomized fast gradient sign method, basic iterative method, universal adversarial perturbations, DeepFool method, and Carlini & Wagner method.
AB - Although Deep Neural Networks (DNNs) have achieved great success on various applications, investigations have increasingly shown DNNs to be highly vulnerable when adversarial examples are used as input. Here, we present a comprehensive defense framework to protect DNNs against adversarial examples. First, we present statistical and minor alteration detectors to filter out adversarial examples contaminated by noticeable and unnoticeable perturbations, respectively. Then, we ensemble the detectors, a deep Residual Generative Network (ResGN), and an adversarially trained targeted network, to construct a complete defense framework. In this framework, the ResGN is our previously proposed network which is used to remove adversarial perturbations, and the adversarially trained targeted network is a network that is learned through adversarial training. Specifically, once the detectors determine an input example to be adversarial, it is cleaned by ResGN and then classified by the adversarially trained targeted network; otherwise, it is directly classified by this network. We empirically evaluate the proposed complete defense on ImageNet dataset. The results confirm the robustness against current representative attacking methods including fast gradient sign method, randomized fast gradient sign method, basic iterative method, universal adversarial perturbations, DeepFool method, and Carlini & Wagner method.
UR - http://www.scopus.com/inward/record.url?scp=85085492652&partnerID=8YFLogxK
U2 - 10.1155/2020/8319249
DO - 10.1155/2020/8319249
M3 - Article
AN - SCOPUS:85085492652
SN - 1024-123X
VL - 2020
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 8319249
ER -