TY - JOUR
T1 - Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis
AU - Kubo, Akiko
AU - Rahman, Sadequr
AU - Utsumi, Yoshinori
AU - Li, Zhongyi
AU - Mukai, Yasuhiko
AU - Yamamoto, Maki
AU - Ugaki, Masashi
AU - Harada, Kyuya
AU - Satoh, Hikaru
AU - Konik-Rose, Christine
AU - Morell, Matthew
AU - Nakamura, Yasunori
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005
Y1 - 2005
N2 - To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA2-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the introduced fragment effectively included the gene for ISA1 for wheat (TaISA1) that was encoded on the D genome. In TaISA1-expressing rice endosperm, phytoglycogen synthesis was substantially replaced by starch synthesis, leaving only residual levels of phytoglycogen. The levels of residual phytoglycogen present were inversely proportional to the expression level of the TaISA1 protein, although the level of pullulanase that had been reduced in EM914 was restored to the same level as that in the wild type. Small but significant differences were found in the amylopectin chain-length distribution, gelatinization temperatures, and A-type x-ray diffraction patterns of the starches from lines expressing TaISA1 when compared with wild-type rice starch, although in the first two parameters, the effect was proportional to the expression level of TaISA. The impact of expression levels of ISA1 on starch structure and properties provides support for the view that ISA1 is directly involved in the synthesis of amylopectin.
AB - To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA2-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the introduced fragment effectively included the gene for ISA1 for wheat (TaISA1) that was encoded on the D genome. In TaISA1-expressing rice endosperm, phytoglycogen synthesis was substantially replaced by starch synthesis, leaving only residual levels of phytoglycogen. The levels of residual phytoglycogen present were inversely proportional to the expression level of the TaISA1 protein, although the level of pullulanase that had been reduced in EM914 was restored to the same level as that in the wild type. Small but significant differences were found in the amylopectin chain-length distribution, gelatinization temperatures, and A-type x-ray diffraction patterns of the starches from lines expressing TaISA1 when compared with wild-type rice starch, although in the first two parameters, the effect was proportional to the expression level of TaISA. The impact of expression levels of ISA1 on starch structure and properties provides support for the view that ISA1 is directly involved in the synthesis of amylopectin.
UR - http://www.scopus.com/inward/record.url?scp=20844446623&partnerID=8YFLogxK
U2 - 10.1104/pp.104.051359
DO - 10.1104/pp.104.051359
M3 - Article
C2 - 15618430
AN - SCOPUS:20844446623
SN - 0032-0889
VL - 137
SP - 43
EP - 56
JO - Plant Physiology
JF - Plant Physiology
IS - 1
ER -