Abstract
CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes. CRISPRc identified 98% of previously defined cell essential genes. After optimizing library construction by analysing transcriptional start sites (TSS), CRISRPi identified 92% of core cell essential genes and did not show a bias to regions involved in copy number alterations. However, bidirectional promoters scored as false positives in CRISRPi. We conclude that CRISPRc and CRISPRi have different off-target effects and combining these approaches provides complementary information in loss-of-function genetic screens.
Original language | English |
---|---|
Article number | 15403 |
Number of pages | 8 |
Journal | Nature Communications |
Volume | 8 |
DOIs | |
Publication status | Published - 23 May 2017 |
Keywords
- cancer genomics
- CRISPR-Cas9 genome editing
- functional genomics