TY - JOUR
T1 - Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent
AU - Garcia-Moreno, Fernando
AU - Vasistha, Navneet A
AU - Trevia, Nonata
AU - Bourne, James A
AU - Molnar, Zoltan
PY - 2012
Y1 - 2012
N2 - Previous studies of macaque and human cortices identified cytoarchitectonically distinct germinal zones; the ventricular zone inner subventricular zone (ISVZ), and outer subventricular zone (OSVZ). To date, the OSVZ has only been described in gyrencephalic brains, separated from the ISVZ by an inner fiber layer and considered a milestone that triggered increased neocortical neurogenesis. However, this observation has only been assessed in a handful of species without the identification of the different progenitor populations. We examined the Amazonian rodent agouti (Dasyprocta agouti) and the marmoset monkey (Callithrix jacchus) to further understand relationships among progenitor compartmentalization, proportions of various cortical progenitors, and degree of cortical folding. We identified a similar cytoarchitectonic distinction between the OSVZ and ISVZ at midgestation in both species. In the marmoset, we quantified the ventricular and abventricular divisions and observed similar proportions as previously described for the human and ferret brains. The proportions of radial glia, intermediate progenitors, and outer radial glial cell (oRG) populations were similar in midgestation lissencephalic marmoset as in gyrencephalic human or ferret. Our findings suggest that cytoarchitectonic subdivisions of SVZ are an evolutionary trend and not a primate specific feature, and a large population of oRG can be seen regardless of cortical folding.
AB - Previous studies of macaque and human cortices identified cytoarchitectonically distinct germinal zones; the ventricular zone inner subventricular zone (ISVZ), and outer subventricular zone (OSVZ). To date, the OSVZ has only been described in gyrencephalic brains, separated from the ISVZ by an inner fiber layer and considered a milestone that triggered increased neocortical neurogenesis. However, this observation has only been assessed in a handful of species without the identification of the different progenitor populations. We examined the Amazonian rodent agouti (Dasyprocta agouti) and the marmoset monkey (Callithrix jacchus) to further understand relationships among progenitor compartmentalization, proportions of various cortical progenitors, and degree of cortical folding. We identified a similar cytoarchitectonic distinction between the OSVZ and ISVZ at midgestation in both species. In the marmoset, we quantified the ventricular and abventricular divisions and observed similar proportions as previously described for the human and ferret brains. The proportions of radial glia, intermediate progenitors, and outer radial glial cell (oRG) populations were similar in midgestation lissencephalic marmoset as in gyrencephalic human or ferret. Our findings suggest that cytoarchitectonic subdivisions of SVZ are an evolutionary trend and not a primate specific feature, and a large population of oRG can be seen regardless of cortical folding.
UR - http://cercor.oxfordjournals.org/content/22/2/482.full.pdf
U2 - 10.1093/cercor/bhr312
DO - 10.1093/cercor/bhr312
M3 - Article
VL - 22
SP - 482
EP - 492
JO - Cerebral Cortex
JF - Cerebral Cortex
SN - 1047-3211
IS - 2
ER -