Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling

Maria Iris Tsionou, Caroline E. Knapp, Calum A. Foley, Catherine R. Munteanu, Andrew Cakebread, Cinzia Imberti, Thomas R. Eykyn, Jennifer D. Young, Brett M. Paterson, Philip J. Blower, Michelle T. Ma

Research output: Contribution to journalArticleResearchpeer-review

21 Citations (Scopus)

Abstract

Gallium-68 (68Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68Ga3+. Ideally, the chelator will rapidly, quantitatively and stably coordinate 68Ga3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68Ga3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68Ga3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68Ga3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low chelator concentrations. NOTP and HBED were only slightly less effective under these conditions. In competition studies with all other chelators, THP demonstrated highest reactivity for 68Ga3+ complexation under all conditions. These data point to THP possessing ideal properties for rapid, one-step kit-based syntheses of 68Ga-biomolecules for molecular PET imaging. LC-MS and 1H, 13C{1H} and 71Ga NMR studies of HBED complexes of Ga3+ showed that under the analytical conditions employed in this study, multiple HBED-bound Ga complexes exist. X-ray diffraction data indicated that crystals isolated from these solutions contained octahedral [Ga(HBED)(H2O)], with HBED coordinated in a pentadentate N2O3 mode, with only one phenolic group coordinated to Ga3+, and the remaining coordination site occupied by a water molecule.

Original languageEnglish
Pages (from-to)49586-49599
Number of pages14
JournalRSC Advances
Volume7
Issue number78
DOIs
Publication statusPublished - 2017
Externally publishedYes

Cite this

Tsionou, M. I., Knapp, C. E., Foley, C. A., Munteanu, C. R., Cakebread, A., Imberti, C., ... Ma, M. T. (2017). Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Advances, 7(78), 49586-49599. https://doi.org/10.1039/c7ra09076e
Tsionou, Maria Iris ; Knapp, Caroline E. ; Foley, Calum A. ; Munteanu, Catherine R. ; Cakebread, Andrew ; Imberti, Cinzia ; Eykyn, Thomas R. ; Young, Jennifer D. ; Paterson, Brett M. ; Blower, Philip J. ; Ma, Michelle T. / Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. In: RSC Advances. 2017 ; Vol. 7, No. 78. pp. 49586-49599.
@article{eecc18484a54425b8a552ad73eeacf21,
title = "Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling",
abstract = "Gallium-68 (68Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68Ga3+. Ideally, the chelator will rapidly, quantitatively and stably coordinate 68Ga3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68Ga3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68Ga3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68Ga3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low chelator concentrations. NOTP and HBED were only slightly less effective under these conditions. In competition studies with all other chelators, THP demonstrated highest reactivity for 68Ga3+ complexation under all conditions. These data point to THP possessing ideal properties for rapid, one-step kit-based syntheses of 68Ga-biomolecules for molecular PET imaging. LC-MS and 1H, 13C{1H} and 71Ga NMR studies of HBED complexes of Ga3+ showed that under the analytical conditions employed in this study, multiple HBED-bound Ga complexes exist. X-ray diffraction data indicated that crystals isolated from these solutions contained octahedral [Ga(HBED)(H2O)], with HBED coordinated in a pentadentate N2O3 mode, with only one phenolic group coordinated to Ga3+, and the remaining coordination site occupied by a water molecule.",
author = "Tsionou, {Maria Iris} and Knapp, {Caroline E.} and Foley, {Calum A.} and Munteanu, {Catherine R.} and Andrew Cakebread and Cinzia Imberti and Eykyn, {Thomas R.} and Young, {Jennifer D.} and Paterson, {Brett M.} and Blower, {Philip J.} and Ma, {Michelle T.}",
year = "2017",
doi = "10.1039/c7ra09076e",
language = "English",
volume = "7",
pages = "49586--49599",
journal = "RSC Advances",
issn = "2046-2069",
publisher = "The Royal Society of Chemistry",
number = "78",

}

Tsionou, MI, Knapp, CE, Foley, CA, Munteanu, CR, Cakebread, A, Imberti, C, Eykyn, TR, Young, JD, Paterson, BM, Blower, PJ & Ma, MT 2017, 'Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling', RSC Advances, vol. 7, no. 78, pp. 49586-49599. https://doi.org/10.1039/c7ra09076e

Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. / Tsionou, Maria Iris; Knapp, Caroline E.; Foley, Calum A.; Munteanu, Catherine R.; Cakebread, Andrew; Imberti, Cinzia; Eykyn, Thomas R.; Young, Jennifer D.; Paterson, Brett M.; Blower, Philip J.; Ma, Michelle T.

In: RSC Advances, Vol. 7, No. 78, 2017, p. 49586-49599.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling

AU - Tsionou, Maria Iris

AU - Knapp, Caroline E.

AU - Foley, Calum A.

AU - Munteanu, Catherine R.

AU - Cakebread, Andrew

AU - Imberti, Cinzia

AU - Eykyn, Thomas R.

AU - Young, Jennifer D.

AU - Paterson, Brett M.

AU - Blower, Philip J.

AU - Ma, Michelle T.

PY - 2017

Y1 - 2017

N2 - Gallium-68 (68Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68Ga3+. Ideally, the chelator will rapidly, quantitatively and stably coordinate 68Ga3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68Ga3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68Ga3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68Ga3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low chelator concentrations. NOTP and HBED were only slightly less effective under these conditions. In competition studies with all other chelators, THP demonstrated highest reactivity for 68Ga3+ complexation under all conditions. These data point to THP possessing ideal properties for rapid, one-step kit-based syntheses of 68Ga-biomolecules for molecular PET imaging. LC-MS and 1H, 13C{1H} and 71Ga NMR studies of HBED complexes of Ga3+ showed that under the analytical conditions employed in this study, multiple HBED-bound Ga complexes exist. X-ray diffraction data indicated that crystals isolated from these solutions contained octahedral [Ga(HBED)(H2O)], with HBED coordinated in a pentadentate N2O3 mode, with only one phenolic group coordinated to Ga3+, and the remaining coordination site occupied by a water molecule.

AB - Gallium-68 (68Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68Ga3+. Ideally, the chelator will rapidly, quantitatively and stably coordinate 68Ga3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68Ga3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68Ga3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68Ga3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low chelator concentrations. NOTP and HBED were only slightly less effective under these conditions. In competition studies with all other chelators, THP demonstrated highest reactivity for 68Ga3+ complexation under all conditions. These data point to THP possessing ideal properties for rapid, one-step kit-based syntheses of 68Ga-biomolecules for molecular PET imaging. LC-MS and 1H, 13C{1H} and 71Ga NMR studies of HBED complexes of Ga3+ showed that under the analytical conditions employed in this study, multiple HBED-bound Ga complexes exist. X-ray diffraction data indicated that crystals isolated from these solutions contained octahedral [Ga(HBED)(H2O)], with HBED coordinated in a pentadentate N2O3 mode, with only one phenolic group coordinated to Ga3+, and the remaining coordination site occupied by a water molecule.

UR - http://www.scopus.com/inward/record.url?scp=85032495837&partnerID=8YFLogxK

U2 - 10.1039/c7ra09076e

DO - 10.1039/c7ra09076e

M3 - Article

VL - 7

SP - 49586

EP - 49599

JO - RSC Advances

JF - RSC Advances

SN - 2046-2069

IS - 78

ER -

Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Advances. 2017;7(78):49586-49599. https://doi.org/10.1039/c7ra09076e