Projects per year
Abstract
Spouted beds are commonly simulated through the Computational Fluid Dynamics – Discrete Element Method approach. The choice of the drag model is still a matter of debate, as they feature peculiar operative conditions. In this work, we simulated two spouted beds containing Geldart-D particles. We tested seven drag models: three are classic models, while four are developed through advanced computational techniques. The results indicate that the key variable is the ratio between the operative and the minimum spouting gas velocity (u/ums). At u = ums only the Gidaspow model can always predict fluidisation, but at low u/ums values the Beetstra model is the best compromise. For higher values, the Rong and Di Felice models behave better, while the others overestimate the particles' velocity. These results can be useful to identify the best performing model and show there is a need for more appropriate models for spouted beds.
Original language | English |
---|---|
Pages (from-to) | 1253-1270 |
Number of pages | 18 |
Journal | Powder Technology |
Volume | 360 |
DOIs | |
Publication status | Published - 15 Jan 2020 |
Keywords
- Eulerian-Lagrangian approach
- Fluidisation
- Gas-solid exchange coefficient
- Spouted bed
- User-defined function
Projects
- 1 Finished
-
ARC Research Hub for Computational Particle Technology
Yu, A., Zhao, D., Rudman, M., Jiang, X., Selomulya, C., Zou, R., Yan, W., Zhou, Z., Guo, B., Shen, Y., Kuang, S., Chu, K., Yang, R., Zhu, H., Zeng, Q., Dong, K., Strezov, V., Wang, G., Zhao, B., Song, S., Evans, T. J., Mao, X., Zhu, J., Hu, D., Pan, R., Li, J., Williams, S. R. O., Luding, S., Liu, Q., Zhang, J., Huang, H., Jiang, Y., Qiu, T., Hapgood, K. & Chen, W.
Australian Research Council (ARC), Jiangxi University of Science and Technology, Jiangsu Industrial Technology Research Institute, Fujian Longking Co Ltd, Baosteel Group Corporation, Hamersley Iron Pty Limited, Monash University, University of New South Wales (UNSW), University of Queensland , Western Sydney University (WSU), Macquarie University
31/12/16 → 30/12/21
Project: Research