TY - JOUR
T1 - Combustion deposition of MoO3 films
T2 - From fundamentals to OPV applications
AU - Marchal, Wouter
AU - De Dobbelaere, Christopher
AU - Kesters, Jurgen
AU - Bonneux, Gilles
AU - Vandenbergh, Joke
AU - Damm, Hanne
AU - Junkers, Thomas
AU - Maes, Wouter
AU - D'Haen, Jan
AU - Van Bael, Marlies K.
AU - Hardy, An
PY - 2015/1/1
Y1 - 2015/1/1
N2 - A systematic study of a combustion precursor's thermal decomposition pathway is undertaken, in both powders and thin films, to obtain insights in the various parameters influencing the combustion process. The study focuses on MoO3 as a hole transporting layer (HTL) for applications in organic photovoltaics (OPV). Via evolved gas analysis, it was found that fuel volatility occurs prior to the actual combustion reaction of the acetylacetonate based precursor, affecting the optimal oxidizer to fuel ratio. Moreover, close investigation showed that the high rate combustion reaction disappears with increasing surface to volume ratio. Nonetheless, thermal analysis performed on films suggests that with the right heating rate, an oxidative complete decomposition still occurs in films, exemplified by the film composition and specific morphological differences in the resulting layers and through analysis of the evolved components. Finally, the discussed synthesis route allows organic free, crystalline MoO3 films to be obtained affording organic solar cell devices with promising current density-voltage characteristics.
AB - A systematic study of a combustion precursor's thermal decomposition pathway is undertaken, in both powders and thin films, to obtain insights in the various parameters influencing the combustion process. The study focuses on MoO3 as a hole transporting layer (HTL) for applications in organic photovoltaics (OPV). Via evolved gas analysis, it was found that fuel volatility occurs prior to the actual combustion reaction of the acetylacetonate based precursor, affecting the optimal oxidizer to fuel ratio. Moreover, close investigation showed that the high rate combustion reaction disappears with increasing surface to volume ratio. Nonetheless, thermal analysis performed on films suggests that with the right heating rate, an oxidative complete decomposition still occurs in films, exemplified by the film composition and specific morphological differences in the resulting layers and through analysis of the evolved components. Finally, the discussed synthesis route allows organic free, crystalline MoO3 films to be obtained affording organic solar cell devices with promising current density-voltage characteristics.
UR - http://www.scopus.com/inward/record.url?scp=84946129081&partnerID=8YFLogxK
U2 - 10.1039/c5ra18001e
DO - 10.1039/c5ra18001e
M3 - Article
AN - SCOPUS:84946129081
SN - 2046-2069
VL - 5
SP - 91349
EP - 91362
JO - RSC Advances
JF - RSC Advances
IS - 111
ER -