Projects per year
Abstract
Injecting new fuels like charcoal and semicoke into ironmaking blast furnaces (BF) helps reduce pulverized coal and coke consumption, leading to significant environmental and economic benefits. This paper comprehensively assesses the performance of blast furnace with the injection of charcoal, semicoke, or pulverized coal. For this purpose, a recently integrated BF model that simulates the whole BF below the burden surface in terms of the gas-solid-liquid-powder multiphase reacting flows is extended to simulate the application of charcoal and semicoke injection. The combustion characteristics of charcoal, semicoke, and pulverized coal in raceways are first revealed. Then, the effects of the combustion on the in-furnace states and overall BF performances are compared in detail. The results show that the overall BF performance in terms of gas flame temperature, coke rate, and hot metal temperature is susceptible to specific components in the injected fuels, including moisture content and fixed carbon ratio. A lower moisture and a higher fixed carbon ratio result in a higher gas flame temperature and fuel-coal replacement ratio and thus a lower coke rate. Overall, the charcoal and semicoke injection is feasible, however, subject to approximate pre-treatment. This integrated BF model can offer a cost-effective way to explore the injection of new fuels of various types to reduce carbon dioxide emissions.
Original language | English |
---|---|
Article number | 119243 |
Number of pages | 17 |
Journal | Powder Technology |
Volume | 433 |
DOIs | |
Publication status | Published - 15 Jan 2024 |
Keywords
- Blast furnace
- Charcoal
- Combustion characteristics
- Inner states
- Integrated model
- Semicoke
Projects
- 2 Active
-
ARC Research Hub for Smart Process Design and Control
Yu, A. (Primary Chief Investigator (PCI)), Strezov, V. (Chief Investigator (CI)), Bao, J. (Chief Investigator (CI)), Wang, G. (Chief Investigator (CI)), Shen, Y. (Chief Investigator (CI)), Rudman, M. (Chief Investigator (CI)), Zhao, D. (Chief Investigator (CI)), Yan, W. (Chief Investigator (CI)), Zou, R. (Chief Investigator (CI)), Chen, C. (Chief Investigator (CI)), Kuang, S. (Chief Investigator (CI)), Selomulya, C. (Chief Investigator (CI)), Yang, R. (Chief Investigator (CI)), Dong, K. (Chief Investigator (CI)), Zhu, H. (Chief Investigator (CI)), Zeng, Q. (Chief Investigator (CI)), Jiang, Y. (Chief Investigator (CI)), Steel, K. (Chief Investigator (CI)), Ma, X. (Chief Investigator (CI)), mingyuan, L. (Chief Investigator (CI)), Evans, T. J. (Partner Investigator (PI)), Song, S. (Partner Investigator (PI)), Mao, X. (Partner Investigator (PI)), Ye, X. (Partner Investigator (PI)), Cheng, G. (Partner Investigator (PI)), Zhou, Z. (Partner Investigator (PI)), Qiu, T. (Partner Investigator (PI)), Sakai, M. (Partner Investigator (PI)), de Ryck, A. (Partner Investigator (PI)), Luding, S. (Partner Investigator (PI)) & Ching, T. (Project Manager)
Australian Research Council (ARC), Monash University – Internal Faculty Contribution, Rio Tinto Services Limited (Australia)
10/01/24 → 10/01/29
Project: Research
-
Model studies of Australian lump ore applied to blast furnace ironmaking
Yu, A. (Primary Chief Investigator (PCI)), Kuang, S. (Chief Investigator (CI)), Evans, T. J. (Partner Investigator (PI)) & Song, S. (Partner Investigator (PI))
Australian Research Council (ARC)
1/06/23 → 31/05/26
Project: Research