Combining ocFLIM and FIDSAM reveals fast and dynamic physiological responses at subcellular resolution in living plant cells

Kirstin Elgass, Katharina Caesar, Klaus Harter, Alfred J J Meixner, Frank E Schleifenbaum

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)


For a deeper understanding of molecular mechanisms within cells and for the realization of predictive biology for intracellular processes at subcellular level, quantitative biology is required. Therefore, novel optical and spectroscopic technologies with quantitative and dynamic output are needed in cell biology. Here, we present a combined approach of novel one-chromophore fluorescence lifetime imaging microscopy to probe the local environment of fluorescent fusion proteins and fluorescence intensity decay shape analysis microscopy to suppress interfering autofluorescence. By applying these techniques, we are able to analyse the subcellular localization and partitioning of a green fluorescence protein fusion of the salt stress-induced protein low temperature induced (LTI)6b in great detail with high spatial and temporal resolution in living cells of Arabidopsis plants.
Original languageEnglish
Pages (from-to)124 - 131
Number of pages8
JournalJournal of Microscopy
Issue numberPt 2
Publication statusPublished - 2011
Externally publishedYes

Cite this