Abstract
Background: While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. Methods: We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. Results: Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). Conclusions: Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221, registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582).
Original language | English |
---|---|
Article number | 228 |
Number of pages | 15 |
Journal | Critical Care |
Volume | 26 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2022 |
Keywords
- Critical care
- Endotypes
- Intensive care unit
- Machine learning
- Traumatic brain injury
- Unsupervised clustering
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Critical Care, Vol. 26, No. 1, 228, 12.2022.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Clustering identifies endotypes of traumatic brain injury in an intensive care cohort
T2 - a CENTER-TBI study
AU - Åkerlund, Cecilia
AU - Holst, Anders
AU - Stocchetti, Nino
AU - Steyerberg, Ewout W.
AU - Menon, David K.
AU - Ercole, Ari
AU - Nelson, David W.
AU - Åkerlund, Cecilia
AU - Amrein, Krisztina
AU - Andelic, Nada
AU - Andreassen, Lasse
AU - Anke, Audny
AU - Antoni, Anna
AU - Audibert, Gérard
AU - Azouvi, Philippe
AU - Azzolini, Maria Luisa
AU - Bartels, Ronald
AU - Barzó, Pál
AU - Beauvais, Romuald
AU - Beer, Ronny
AU - Bellander, Bo Michael
AU - Belli, Antonio
AU - Benali, Habib
AU - Berardino, Maurizio
AU - Beretta, Luigi
AU - Blaabjerg, Morten
AU - Bragge, Peter
AU - Brazinova, Alexandra
AU - Brinck, Vibeke
AU - Brooker, Joanne
AU - Brorsson, Camilla
AU - Buki, Andras
AU - Bullinger, Monika
AU - Cabeleira, Manuel
AU - Caccioppola, Alessio
AU - Calappi, Emiliana
AU - Calvi, Maria Rosa
AU - Cameron, Peter
AU - Lozano, Guillermo Carbayo
AU - Carbonara, Marco
AU - Cavallo, Simona
AU - Chevallard, Giorgio
AU - Chieregato, Arturo
AU - Citerio, Giuseppe
AU - Clusmann, Hans
AU - Coburn, Mark
AU - Coles, Jonathan
AU - Cooper, Jamie D.
AU - Correia, Marta
AU - Čović, Amra
AU - Curry, Nicola
AU - Czeiter, Endre
AU - Czosnyka, Marek
AU - DahyotFizelier, Claire
AU - Dark, Paul
AU - Dawes, Helen
AU - De Keyser, Véronique
AU - Degos, Vincent
AU - Corte, Francesco Della
AU - Boogert, Hugo den
AU - Depreitere, Bart
AU - Đilvesi, Đula
AU - Dixit, Abhishek
AU - Donoghue, Emma
AU - Dreier, Jens
AU - Dulière, Guy Loup
AU - Esser, Patrick
AU - Ezer, Erzsébet
AU - Fabricius, Martin
AU - Feigin, Valery L.
AU - Foks, Kelly
AU - Frisvold, Shirin
AU - Furmanov, Alex
AU - Gagliardo, Pablo
AU - Galanaud, Damien
AU - Gantner, Dashiell
AU - Gao, Guoyi
AU - George, Pradeep
AU - Ghuysen, Alexandre
AU - Giga, Lelde
AU - Glocker, Ben
AU - Golubovic, Jagoš
AU - Gomez, Pedro A.
AU - Gratz, Johannes
AU - Gravesteijn, Benjamin
AU - Grossi, Francesca
AU - Gruen, Russell L.
AU - Gupta, Deepak
AU - Haagsma, Juanita A.
AU - Haitsma, Iain
AU - Helbok, Raimund
AU - Helseth, Eirik
AU - Horton, Lindsay
AU - Huijben, Jilske
AU - Hutchinson, Peter J.
AU - Jacobs, Bram
AU - Jankowski, Stefan
AU - Jarrett, Mike
AU - Jiang, Jiyao
AU - Johnson, Faye
AU - Jones, Kelly
AU - Karan, Mladen
AU - Kolias, Angelos G.
AU - Kompanje, Erwin
AU - Kondziella, Daniel
AU - Kornaropoulos, Evgenios
AU - Koskinen, Lars Owe
AU - Kovács, Noémi
AU - Kowark, Ana
AU - Lagares, Alfonso
AU - Lanyon, Linda
AU - Laureys, Steven
AU - Lecky, Fiona
AU - Ledoux, Didier
AU - Lefering, Rolf
AU - Legrand, Valerie
AU - Lejeune, Aurelie
AU - Levi, Leon
AU - Lightfoot, Roger
AU - Lingsma, Hester
AU - Maas, Andrew I.R.
AU - CastañoLeón, Ana M.
AU - Maegele, Marc
AU - Majdan, Marek
AU - Manara, Alex
AU - Manley, Geoffrey
AU - Martino, Costanza
AU - Maréchal, Hugues
AU - Mattern, Julia
AU - McMahon, Catherine
AU - Melegh, Béla
AU - Menon, David
AU - Menovsky, Tomas
AU - Mikolic, Ana
AU - Misset, Benoit
AU - Muraleedharan, Visakh
AU - Murray, Lynnette
AU - Negru, Ancuta
AU - Nelson, David
AU - Newcombe, Virginia
AU - Nieboer, Daan
AU - Nyirádi, József
AU - Olubukola, Otesile
AU - Oresic, Matej
AU - Ortolano, Fabrizio
AU - Palotie, Aarno
AU - Parizel, Paul M.
AU - Payen, Jean François
AU - Perera, Natascha
AU - Perlbarg, Vincent
AU - Persona, Paolo
AU - Peul, Wilco
AU - Piippo-Karjalainen, Anna
AU - Pirinen, Matti
AU - Pisica, Dana
AU - Ples, Horia
AU - Polinder, Suzanne
AU - Pomposo, Inigo
AU - Posti, Jussi P.
AU - Puybasset, Louis
AU - Radoi, Andreea
AU - Ragauskas, Arminas
AU - Raj, Rahul
AU - Rambadagalla, Malinka
AU - Helmrich, Isabel Retel
AU - Rhodes, Jonathan
AU - Richardson, Sylvia
AU - Richter, Sophie
AU - Ripatti, Samuli
AU - Rocka, Saulius
AU - Roe, Cecilie
AU - Roise, Olav
AU - Rosand, Jonathan
AU - Rosenfeld, Jeffrey V.
AU - Rosenlund, Christina
AU - Rosenthal, Guy
AU - Rossaint, Rolf
AU - Rossi, Sandra
AU - Rueckert, Daniel
AU - Rusnák, Martin
AU - Sahuquillo, Juan
AU - Sakowitz, Oliver
AU - SanchezPorras, Renan
AU - Sandor, Janos
AU - Schäfer, Nadine
AU - Schmidt, Silke
AU - Schoechl, Herbert
AU - Schoonman, Guus
AU - Schou, Rico Frederik
AU - Schwendenwein, Elisabeth
AU - Sewalt, Charlie
AU - Singh, Ranjit D.
AU - Skandsen, Toril
AU - Smielewski, Peter
AU - Sorinola, Abayomi
AU - Stamatakis, Emmanuel
AU - Stanworth, Simon
AU - Stevens, Robert
AU - Stewart, William
AU - Sundström, Nina
AU - Takala, Riikka
AU - Tamás, Viktória
AU - Tamosuitis, Tomas
AU - Taylor, Mark Steven
AU - Ao, Braden Te
AU - Tenovuo, Olli
AU - Theadom, Alice
AU - Thomas, Matt
AU - Tibboel, Dick
AU - Timmers, Marjolein
AU - Tolias, Christos
AU - Trapani, Tony
AU - Tudora, Cristina Maria
AU - Unterberg, Andreas
AU - Vajkoczy, Peter
AU - Vallance, Shirley
AU - Valeinis, Egils
AU - Vámos, Zoltán
AU - van der Jagt, Mathieu
AU - Van der Steen, Gregory
AU - van der Naalt, Joukje
AU - van Dijck, Jeroen T.J.M.
AU - van Erp, Inge A.
AU - van Essen, Thomas A.
AU - Van Hecke, Wim
AU - van Heugten, Caroline
AU - Van Praag, Dominique
AU - van Veen, Ernest
AU - Vyvere, Thijs Vande
AU - van Wijk, Roel P.J.
AU - Vargiolu, Alessia
AU - Vega, Emmanuel
AU - Velt, Kimberley
AU - Verheyden, Jan
AU - Vespa, Paul M.
AU - Vik, Anne
AU - Vilcinis, Rimantas
AU - Volovici, Victor
AU - von Steinbüchel, Nicole
AU - Voormolen, Daphne
AU - Vulekovic, Petar
AU - Wang, Kevin K.W.
AU - Whitehouse, Daniel
AU - Wiegers, Eveline
AU - Williams, Guy
AU - Wilson, Lindsay
AU - Winzeck, Stefan
AU - Wolf, Stefan
AU - Yang, Zhihui
AU - Ylén, Peter
AU - the CENTER-TBI investigators and participants
N1 - Funding Information: Open access funding provided by Karolinska Institute. CENTER-TBI was supported by the European Union 7 Framework program (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA) and from Integra LifeSciences Corporation (USA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. th Funding Information: Data for the CENTER-TBI study was collected through Quesgen e-CRF (Quesgen Systems Inc, USA), hosted on the INCF platform and extracted via the INCF Neurobot tool (INCF, Sweden). Version 3.0 of the CENTER-TBI dataset was used in this manuscript. Funding Information: DM reports grants, personal fees and non-financial support from GlaxoSmithKline, grants and personal fees from NeuroTrauma Sciences, personal fees from Pfizer Ltd, personal fees from PressuraNeuro, grants and personal fees from Lantmannen AB, grants and personal fees from Integra, outside the submitted work. All other authors declare no competing interests. Publisher Copyright: © 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. Methods: We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. Results: Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). Conclusions: Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221, registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582).
AB - Background: While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. Methods: We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. Results: Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). Conclusions: Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221, registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582).
KW - Critical care
KW - Endotypes
KW - Intensive care unit
KW - Machine learning
KW - Traumatic brain injury
KW - Unsupervised clustering
UR - http://www.scopus.com/inward/record.url?scp=85135370588&partnerID=8YFLogxK
U2 - 10.1186/s13054-022-04079-w
DO - 10.1186/s13054-022-04079-w
M3 - Article
C2 - 35897070
AN - SCOPUS:85135370588
SN - 1364-8535
VL - 26
JO - Critical Care
JF - Critical Care
IS - 1
M1 - 228
ER -