Classification of lung nodules based on Deep residual networks and migration learning

Panpan Wu, Xuanchao Sun, Ziping Zhao, Haishuai Wang, Shirui Pan, Björn Schuller

Research output: Contribution to journalArticleResearchpeer-review

44 Citations (Scopus)

Abstract

The classification process of lung nodule detection in a traditional computer-aided detection (CAD) system is complex, and the classification result is heavily dependent on the performance of each step in lung nodule detection, causing low classification accuracy and high false positive rate. In order to alleviate these issues, a lung nodule classification method based on a deep residual network is proposed. Abandoning traditional image processing methods and taking the 50-layer ResNet network structure as the initial model, the deep residual network is constructed by combining residual learning and migration learning. The proposed approach is verified by conducting experiments on the lung computed tomography (CT) images from the publicly available LIDC-IDRI database. An average accuracy of 98.23% and a false positive rate of 1.65% are obtained based on the ten-fold cross-validation method. Compared with the conventional support vector machine (SVM)-based CAD system, the accuracy of our method improved by 9.96% and the false positive rate decreased by 6.95%, while the accuracy improved by 1.75% and 2.42%, respectively, and the false positive rate decreased by 2.07% and 2.22%, respectively, in contrast to the VGG19 model and InceptionV3 convolutional neural networks. The experimental results demonstrate the effectiveness of our proposed method in lung nodule classification for CT images.

Original languageEnglish
Article number8975078
Number of pages10
JournalComputational Intelligence and Neuroscience
Volume2020
DOIs
Publication statusPublished - 30 Mar 2020

Cite this