Classification of healthcare data using genetic fuzzy logic system and wavelets

Thanh Nguyen, Abbas Khosravi, Douglas Creighton, Saeid Nahavandi

Research output: Contribution to journalArticleResearchpeer-review

120 Citations (Scopus)

Abstract

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Original languageEnglish
Pages (from-to)2184-2197
Number of pages14
JournalExpert Systems with Applications
Volume42
Issue number4
DOIs
Publication statusPublished - Mar 2015
Externally publishedYes

Keywords

  • Breast cancer
  • Fuzzy standard additive model
  • Genetic algorithm
  • Healthcare data classification
  • Heart disease
  • Wavelet transformation

Cite this