Circadian regulation of lipid metabolism

Joshua J. Gooley

Research output: Contribution to journalArticleResearchpeer-review

35 Citations (Scopus)

Abstract

The circadian system temporally coordinates daily rhythms in feeding behaviour and energy metabolism. The objective of the present paper is to review the mechanisms that underlie circadian regulation of lipid metabolic pathways. Circadian rhythms in behaviour and physiology are generated by master clock neurons in the suprachiasmatic nucleus (SCN). The SCN and its efferent targets in the hypothalamus integrate light and feeding signals to entrain behavioural rhythms as well as clock cells located in peripheral tissues, including the liver, adipose tissue and muscle. Circadian rhythms in gene expression are regulated at the cellular level by a molecular clock comprising a core set of clock genes/proteins. In peripheral tissues, hundreds of genes involved in lipid biosynthesis and fatty acid oxidation are rhythmically activated and repressed by clock proteins, hence providing a direct mechanism for circadian regulation of lipids. Disruption of clock gene function results in abnormal metabolic phenotypes and impaired lipid absorption, demonstrating that the circadian system is essential for normal energy metabolism. The composition and timing of meals influence diurnal regulation of metabolic pathways, with food intake during the usual rest phase associated with dysregulation of lipid metabolism. Recent studies using metabolomics and lipidomics platforms have shown that hundreds of lipid species are circadian-regulated in human plasma, including but not limited to fatty acids, TAG, glycerophospholipids, sterol lipids and sphingolipids. In future work, these lipid profiling approaches can be used to understand better the interaction between diet, mealtimes and circadian rhythms on lipid metabolism and risk for obesity and metabolic diseases.

Original languageEnglish
Pages (from-to)440-450
Number of pages11
JournalProceedings of the Nutrition Society
Volume75
Issue number4
DOIs
Publication statusPublished - 1 Nov 2016

Keywords

  • Chronobiology
  • Circadian
  • Lipidomics
  • Lipids
  • Metabolism
  • Metabolomics

Cite this