Chronic myelogenous leukemia-initiating cells require polycomb group protein EZH2

Huafeng Xie, Cong Peng, Jialiang Huang, Bin E. Li, Woojin Kim, Elenoe C. Smith, Yuko Fujiwara, Jun Qi, Giulia Cheloni, Partha P. Das, Minh Nguyen, Shaoguang Li, James E. Bradner, Stuart H. Orkin

Research output: Contribution to journalArticleResearchpeer-review

67 Citations (Scopus)


Tyrosine kinase inhibitors (TKI) have revolutionized chronic myelogenous leukemia (CML) management. Disease eradication, however, is hampered by innate resistance of leukemia-initiating cells (LIC) to TKI-induced killing, which also provides the basis for subsequent emergence of TKI-resistant mutants. We report that EZH2, the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is overexpressed in CML LICs and required for colony formation and survival and cell-cycle progression of CML cell lines. A critical role for EZH2 is supported by genetic studies in a mouse CML model. Inactivation of Ezh2 in conventional conditional mice and through CRISPR/Cas9-mediated gene editing prevents initiation and maintenance of disease and survival of LICs, irrespective of BCR-ABL1 mutational status, and extends survival. Expression of the EZH2 homolog EZH1 is reduced in EZH2-deficient CML LICs, creating a scenario resembling complete loss of PRC2. EZH2 dependence of CML LICs raises prospects for improved therapy of TKI-resistant CML and/or eradication of disease by addition of EZH2 inhibitors. SIGNIFICANCE: This work defines EZH2 as a selective vulnerability for CML cells and their LICs, regardless of BCR-ABL1 mutational status. Our findings provide an experimental rationale for improving disease eradication through judicious use of EZH2 inhibitors within the context of standard-of-care TKI therapy.

Original languageEnglish
Pages (from-to)1237-1247
Number of pages11
JournalCancer Discovery
Issue number11
Publication statusPublished - 1 Nov 2016
Externally publishedYes

Cite this