TY - JOUR
T1 - Chicken anemia virus
T2 - An understanding of the in-vitro host response over time
AU - Crowley, Tamsyn M
AU - Haring, Volker R.
AU - Moore, Robert
PY - 2011/2/1
Y1 - 2011/2/1
N2 - Chicken anemia virus (CAV) is an economically important virus affecting the chicken meat and egg industry. CAV is characterized by anemia, lymphoid depletion, and immunosuppression. Microarrays were used to investigate the response of MDCC-MSB1-cells (MSB1) to infection with CAV at 24 and 48 h post-infection (hpi). The major genes responding to CAV infection include genes involved in inflammation, apoptosis, and antiviral activity. Several cytokines were differentially regulated at either 24 or 48 hpi, including interleukin 2 (IL-2), interleukin receptors IL-1R, IL-22R, IL-18R, and IL-7R, and interferon-α (IFN-α). While there were many genes differentially regulated in this experiment, only two genes were common to both time points, suggesting a dramatic change in gene expression over the two time points studied. The present study is the first microarray experiment to investigate CAV, and we identified a number of key pathways involved in viral infection. Overall, there were more genes upregulated at 24 hpi than at 48 hpi, including genes involved in cytokine signaling, apoptosis, and antiviral activity. The two time points were vastly different in their gene expression patterns, in that at 24 hpi there were many genes involved in the response to infection, whereas at 48 hpi there were many genes associated with apoptosis and immunosuppression.
AB - Chicken anemia virus (CAV) is an economically important virus affecting the chicken meat and egg industry. CAV is characterized by anemia, lymphoid depletion, and immunosuppression. Microarrays were used to investigate the response of MDCC-MSB1-cells (MSB1) to infection with CAV at 24 and 48 h post-infection (hpi). The major genes responding to CAV infection include genes involved in inflammation, apoptosis, and antiviral activity. Several cytokines were differentially regulated at either 24 or 48 hpi, including interleukin 2 (IL-2), interleukin receptors IL-1R, IL-22R, IL-18R, and IL-7R, and interferon-α (IFN-α). While there were many genes differentially regulated in this experiment, only two genes were common to both time points, suggesting a dramatic change in gene expression over the two time points studied. The present study is the first microarray experiment to investigate CAV, and we identified a number of key pathways involved in viral infection. Overall, there were more genes upregulated at 24 hpi than at 48 hpi, including genes involved in cytokine signaling, apoptosis, and antiviral activity. The two time points were vastly different in their gene expression patterns, in that at 24 hpi there were many genes involved in the response to infection, whereas at 48 hpi there were many genes associated with apoptosis and immunosuppression.
UR - http://www.scopus.com/inward/record.url?scp=79951789189&partnerID=8YFLogxK
U2 - 10.1089/vim.2010.0064
DO - 10.1089/vim.2010.0064
M3 - Article
C2 - 21319974
AN - SCOPUS:79951789189
SN - 0882-8245
VL - 24
SP - 3
EP - 9
JO - Viral Immunology
JF - Viral Immunology
IS - 1
ER -