Characterization of the central neural projections to brown, white, and beige adipose tissue

Nicole M. Wiedmann, Aneta Stefanidis, Brian J. Oldfield

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue.

Original languageEnglish
Pages (from-to)4879-4890
Number of pages12
JournalFASEB Journal
Volume31
Issue number11
DOIs
Publication statusPublished - 1 Nov 2017

Keywords

  • brite fat
  • command neurons
  • neurotropic viruses

Cite this

@article{83b472e84c114a538a5f6f8c44222bd5,
title = "Characterization of the central neural projections to brown, white, and beige adipose tissue",
abstract = "The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue.",
keywords = "brite fat, command neurons, neurotropic viruses",
author = "Wiedmann, {Nicole M.} and Aneta Stefanidis and Oldfield, {Brian J.}",
year = "2017",
month = "11",
day = "1",
doi = "10.1096/fj.201700433R",
language = "English",
volume = "31",
pages = "4879--4890",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "Federation of American Societies for Experimental Biology",
number = "11",

}

Characterization of the central neural projections to brown, white, and beige adipose tissue. / Wiedmann, Nicole M.; Stefanidis, Aneta; Oldfield, Brian J.

In: FASEB Journal, Vol. 31, No. 11, 01.11.2017, p. 4879-4890.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Characterization of the central neural projections to brown, white, and beige adipose tissue

AU - Wiedmann, Nicole M.

AU - Stefanidis, Aneta

AU - Oldfield, Brian J.

PY - 2017/11/1

Y1 - 2017/11/1

N2 - The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue.

AB - The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue.

KW - brite fat

KW - command neurons

KW - neurotropic viruses

UR - http://www.scopus.com/inward/record.url?scp=85037550800&partnerID=8YFLogxK

U2 - 10.1096/fj.201700433R

DO - 10.1096/fj.201700433R

M3 - Article

VL - 31

SP - 4879

EP - 4890

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 11

ER -