Projects per year
Abstract
Sand screens are widely used to control sand production in unconsolidated reservoirs. Because of the lack of insightful understanding of this process, to date, reliably optimizing screen size is still a challenge. This paper presents a numerical study of the sand retention and production behaviors for widely used wire-wrapped screens by means of the combined approach of computational fluid dynamic (CFD) and discrete element method (DEM). The validity of the model has been verified by comparing the predicted critical slot sizes and sand production with published experimental results. On this basis, the effects of slot width-particle size ratios and wetting fluids, including gas and crude oil, are studied. The numerical results show that the increase in size ratio increases sand production, and the presence of fluid flow enhances sand production and causes unstable sand retention, which is more significant for crude oil compared to gas. Also, three mechanisms that allow the sand retention over a screen are identified, including stable bridging, bridging with intermittent collapse, and bridging with continuous collapse. Wetting fluids play an essential role in the sand production and bridging when the particle-fluid forces exerted on the particles near the slot are significant. Such forces induce strong localized particle-particle interactions in the nearby region over the slot, which accounts for the unstable bridging behavior.
Original language | English |
---|---|
Pages (from-to) | 410-420 |
Number of pages | 11 |
Journal | Powder Technology |
Volume | 378 |
DOIs | |
Publication status | Published - 22 Jan 2021 |
Keywords
- Bridging
- CFD-DEM
- Particle-fluid flow
- Sand retention mechanisms
- Sand screen
Projects
- 2 Finished
-
ARC Research Hub for Computational Particle Technology
Yu, A. (Primary Chief Investigator (PCI)), Zhao, D. (Chief Investigator (CI)), Rudman, M. (Chief Investigator (CI)), Jiang, X. (Chief Investigator (CI)), Selomulya, C. (Chief Investigator (CI)), Zou, R. (Chief Investigator (CI)), Yan, W. (Chief Investigator (CI)), Zhou, Z. (Chief Investigator (CI)), Guo, B. (Chief Investigator (CI)), Shen, Y. (Chief Investigator (CI)), Kuang, S. (Primary Chief Investigator (PCI)), Chu, K. (Chief Investigator (CI)), Yang, R. (Chief Investigator (CI)), Zhu, H. (Chief Investigator (CI)), Zeng, Q. (Chief Investigator (CI)), Dong, K. (Chief Investigator (CI)), Strezov, V. (Chief Investigator (CI)), Wang, G. (Chief Investigator (CI)), Zhao, B. (Chief Investigator (CI)), Song, S. (Partner Investigator (PI)), Evans, T. J. (Partner Investigator (PI)), Mao, X. (Partner Investigator (PI)), Zhu, J. (Partner Investigator (PI)), Hu, D. (Partner Investigator (PI)), Pan, R. (Partner Investigator (PI)), Li, J. (Partner Investigator (PI)), Williams, S. R. O. (Partner Investigator (PI)), Luding, S. (Partner Investigator (PI)), Liu, Q. (Partner Investigator (PI)), Zhang, J. (Chief Investigator (CI)), Huang, H. (Chief Investigator (CI)), Jiang, Y. (Chief Investigator (CI)), Qiu, T. (Partner Investigator (PI)), Hapgood, K. (Chief Investigator (CI)) & Chen, W. (Partner Investigator (PI))
Australian Research Council (ARC), Jiangxi University of Science and Technology, Jiangsu Industrial Technology Research Institute, Fujian Longking Co Ltd, Baosteel Group Corporation, Hamersley Iron Pty Limited, Monash University, University of New South Wales (UNSW), University of Queensland , Western Sydney University (WSU), Macquarie University
31/12/16 → 30/12/21
Project: Research
-
Particle-scale modelling of particle-fluid flows in gas and oil extraction
Yu, A. (Primary Chief Investigator (PCI)), Choi, X. (Chief Investigator (CI)), Kuang, S. (Chief Investigator (CI)), Zhou, Z. (Chief Investigator (CI)), Humphries, E. (Partner Investigator (PI)) & Xia, B. (Chief Investigator (CI))
Australian Research Council (ARC), Monash University, Weir Minerals Australia Ltd, China Pioneer Energy Science and Technology Co Ltd
15/12/16 → 30/06/20
Project: Research