CFD-DEM investigation of centrifugal slurry pump with polydisperse particle feeds

Haoyu Wang, Fayuan Huang, Mohammad Fazli, Shibo Kuang, Aibing Yu

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)

Abstract

Polydisperse particle feed into centrifugal slurry complicates hydraulic performance and wall erosion but is poorly understood. This paper presents a numerical study of a centrifugal slurry pump, focusing on the effect of particle size distribution (PSD) using the combined computational fluid dynamics and discrete element method (CFD-DEM). It incorporates rigid impeller rotation and wall erosion. On this basis, the hydraulic and erosion model validity is verified by clear water performance and jet erosion test, respectively. Additionally, this CFD-DEM model is compared with the dense discrete phase model (DDPM), demonstrating more precise erosion prediction as its fully resolved particle-particle interactions. Generally, total pump erosion severity intensifies when the PSD is broadened. Compartment-wise, it indicates the necessity of tailoring flow structure to enlarge drag force, therefore, mitigate particle aggregation in the impeller. This in-house CFD-DEM model is promising for addressing particle-fluid flow problems in centrifugal pumps or coupling with data driven method.

Original languageEnglish
Article number120204
Number of pages12
JournalPowder Technology
Volume447
DOIs
Publication statusPublished - 1 Nov 2024

Keywords

  • Centrifugal slurry pump
  • CFD-DEM
  • Particle size distribution (PSD)
  • Rotary particle-fluid flow
  • Wall erosion
  • ARC Research Hub for Smart Process Design and Control

    Yu, A. (Primary Chief Investigator (PCI)), Strezov, V. (Chief Investigator (CI)), Bao, J. (Chief Investigator (CI)), Wang, G. (Chief Investigator (CI)), Shen, Y. (Chief Investigator (CI)), Rudman, M. (Chief Investigator (CI)), Zhao, D. (Chief Investigator (CI)), Yan, W. (Chief Investigator (CI)), Zou, R. (Chief Investigator (CI)), Chen, C. (Chief Investigator (CI)), Kuang, S. (Chief Investigator (CI)), Selomulya, C. (Chief Investigator (CI)), Yang, R. (Chief Investigator (CI)), Dong, K. (Chief Investigator (CI)), Zhu, H. (Chief Investigator (CI)), Zeng, Q. (Chief Investigator (CI)), Jiang, Y. (Chief Investigator (CI)), Steel, K. (Chief Investigator (CI)), Ma, X. (Chief Investigator (CI)), mingyuan, L. (Chief Investigator (CI)), Evans, T. J. (Partner Investigator (PI)), Song, S. (Partner Investigator (PI)), Mao, X. (Partner Investigator (PI)), Ye, X. (Partner Investigator (PI)), Cheng, G. (Partner Investigator (PI)), Zhou, Z. (Partner Investigator (PI)), Qiu, T. (Partner Investigator (PI)), Sakai, M. (Partner Investigator (PI)), de Ryck, A. (Partner Investigator (PI)), Luding, S. (Partner Investigator (PI)) & Ching, T. (Project Manager)

    Australian Research Council (ARC), Monash University – Internal Faculty Contribution, Rio Tinto Services Limited (Australia)

    10/01/2410/01/29

    Project: Research

Cite this