TY - JOUR
T1 - Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes
AU - Malysheva, Anzhela
AU - Ivask, Angela
AU - Doolette, Casey L.
AU - Voelcker, Nicolas H.
AU - Lombi, Enzo
N1 - Funding Information:
We thank A. Mitchell for his help with Cy-TOF and S. Ritch and G. Brunetti for their help with ICP-MS. A part of the work was undertaken on the XAS beamline at the Australian Synchrotron, part of the Australian Nuclear Science and Technology Organisation (ANSTO). We acknowledge support for N.H.V. from the Melbourne Centre for Nanofabrication, the Victorian Node of the Australian National Fabrication Facility.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8
Y1 - 2021/8
N2 - Our knowledge of uptake, toxicity and detoxification mechanisms as related to nanoparticles’ (NPs’) characteristics remains incomplete. Here we combine the analytical power of three advanced techniques to study the cellular binding and uptake and the intracellular transformation of silver nanoparticles (AgNPs): single-particle inductively coupled mass spectrometry, mass cytometry and synchrotron X-ray absorption spectrometry. Our results show that although intracellular and extracellularly bound AgNPs undergo major transformation depending on their primary size and surface coating, intracellular Ag in 24 h AgNP-exposed human lymphocytes exists in nanoparticulate form. Biotransformation of AgNPs is dominated by sulfidation, which can be viewed as one of the cellular detoxification pathways for Ag. These results also show that the toxicity of AgNPs is primarily driven by internalized Ag. In fact, when toxicity thresholds are expressed as the intracellular mass of Ag per cell, differences in toxicity between NPs of different coatings and sizes are minimized. The analytical approach developed here has broad applicability in different systems where the aim is to understand and quantify cell–NP interactions and biotransformation.
AB - Our knowledge of uptake, toxicity and detoxification mechanisms as related to nanoparticles’ (NPs’) characteristics remains incomplete. Here we combine the analytical power of three advanced techniques to study the cellular binding and uptake and the intracellular transformation of silver nanoparticles (AgNPs): single-particle inductively coupled mass spectrometry, mass cytometry and synchrotron X-ray absorption spectrometry. Our results show that although intracellular and extracellularly bound AgNPs undergo major transformation depending on their primary size and surface coating, intracellular Ag in 24 h AgNP-exposed human lymphocytes exists in nanoparticulate form. Biotransformation of AgNPs is dominated by sulfidation, which can be viewed as one of the cellular detoxification pathways for Ag. These results also show that the toxicity of AgNPs is primarily driven by internalized Ag. In fact, when toxicity thresholds are expressed as the intracellular mass of Ag per cell, differences in toxicity between NPs of different coatings and sizes are minimized. The analytical approach developed here has broad applicability in different systems where the aim is to understand and quantify cell–NP interactions and biotransformation.
UR - http://www.scopus.com/inward/record.url?scp=85105773287&partnerID=8YFLogxK
U2 - 10.1038/s41565-021-00914-3
DO - 10.1038/s41565-021-00914-3
M3 - Article
C2 - 33986512
AN - SCOPUS:85105773287
SN - 1748-3387
VL - 16
SP - 926
EP - 932
JO - Nature Nanotechnology
JF - Nature Nanotechnology
IS - 8
ER -