Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus

Eleni Kyriakou, Stefanie Schmidt, Garron T. Dodd, Katrin Pfuhlmann, Stephanie E. Simonds, Dominik Lenhart, Arie Geerlof, Sonja C. Schriever, Meri De Angelis, Karl Werner Schramm, Oliver Plettenburg, Michael A. Cowley, Tony Tiganis, Matthias H. Tschöp, Paul T. Pfluger, Michael Sattler, Ana C. Messias

Research output: Contribution to journalArticleResearchpeer-review

12 Citations (Scopus)

Abstract

Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 μg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.

Original languageEnglish
Number of pages14
JournalJournal of Medicinal Chemistry
Volume61
Issue number24
DOIs
Publication statusPublished - 7 Dec 2018

Cite this