Abstract
Caspase-2, one of the most evolutionarily conserved of the caspase family, has been implicated in maintenance of chromosomal stability and tumour suppression. Caspase-2 deficient (Casp2 -/- ) mice develop normally but show premature ageing-related traits and when challenged by certain stressors, succumb to enhanced tumour development and aneuploidy. To test how caspase-2 protects against chromosomal instability, we utilized an ex vivo system for aneuploidy where primary splenocytes from Casp2 -/- mice were exposed to anti-mitotic drugs and followed up by live cell imaging. Our data show that caspase-2 is required for deleting mitotically aberrant cells. Acute silencing of caspase-2 in cultured human cells recapitulated these results. We further generated Casp2 C320S mutant mice to demonstrate that caspase-2 catalytic activity is essential for its function in limiting aneuploidy. Our results provide direct evidence that the apoptotic activity of caspase-2 is necessary for deleting cells with mitotic aberrations to limit aneuploidy.
Original language | English |
---|---|
Pages (from-to) | 2704-2714 |
Number of pages | 11 |
Journal | Oncogene |
Volume | 36 |
Issue number | 19 |
DOIs | |
Publication status | Published - 11 May 2017 |
Externally published | Yes |
Keywords
- apoptosis
- mitosis