TY - JOUR
T1 - Cardiac Output and Cerebral Blood Flow
T2 - A Systematic Review of Cardio-Cerebral Coupling
AU - Castle-Kirszbaum, Mendel
AU - Parkin, William Geoffrey
AU - Goldschlager, Tony
AU - Lewis, Philip M.
N1 - Publisher Copyright:
© 2021 Lippincott Williams and Wilkins. All rights reserved.
PY - 2022/10
Y1 - 2022/10
N2 - Control of cerebral blood flow (CBF) is crucial to the management of neurocritically ill patients. Small studies which have examined the role of cardiac output (CO) as a determinant of CBF have inconsistently demonstrated evidence of cardio-cerebral coupling. Putative physiological mechanisms underpinning such coupling include changes in arterial blood pressure pulsatility, which would produce vasodilation through increased oscillatory wall-shear-stress and baroreceptor mediated reflex sympatholysis, and changes in venous backpressure which may improve cerebral perfusion pressure. We sought to summarize and contextualize the literature on the relationship between CO and CBF and discuss the implications of cardio-cerebral coupling for neurocritical care. A systematic review of the literature yielded 41 studies; all were of low-quality and at high-risk of bias. Results were heterogenous, with evidence for both corroboration and confutation of a relationship between CO and CBF in both normal and abnormal cerebrovascular states. Common limitations of studies were lack of instantaneous CBF measures with reliance on transcranial Doppler-derived blood flow velocity as a surrogate, inability to control for fluctuations in established determinants of CBF (eg, PaCO2), and direct effects on CBF by the interventions used to alter CO. Currently, the literature is insufficiently robust to confirm an independent relationship between CO and CBF. Hypothetically, the presence of cardio-cerebral coupling would have important implications for clinical practice. Manipulation of CBF could occur without the risks associated with extremes of arterial pressure, potentially improving therapy for those with cerebral ischemia of various etiologies. However, current literature is insufficiently robust to confirm an independent relationship between CO and CBF, and further studies with improved methodology are required before therapeutic interventions can be based on cardio-cerebral coupling.
AB - Control of cerebral blood flow (CBF) is crucial to the management of neurocritically ill patients. Small studies which have examined the role of cardiac output (CO) as a determinant of CBF have inconsistently demonstrated evidence of cardio-cerebral coupling. Putative physiological mechanisms underpinning such coupling include changes in arterial blood pressure pulsatility, which would produce vasodilation through increased oscillatory wall-shear-stress and baroreceptor mediated reflex sympatholysis, and changes in venous backpressure which may improve cerebral perfusion pressure. We sought to summarize and contextualize the literature on the relationship between CO and CBF and discuss the implications of cardio-cerebral coupling for neurocritical care. A systematic review of the literature yielded 41 studies; all were of low-quality and at high-risk of bias. Results were heterogenous, with evidence for both corroboration and confutation of a relationship between CO and CBF in both normal and abnormal cerebrovascular states. Common limitations of studies were lack of instantaneous CBF measures with reliance on transcranial Doppler-derived blood flow velocity as a surrogate, inability to control for fluctuations in established determinants of CBF (eg, PaCO2), and direct effects on CBF by the interventions used to alter CO. Currently, the literature is insufficiently robust to confirm an independent relationship between CO and CBF. Hypothetically, the presence of cardio-cerebral coupling would have important implications for clinical practice. Manipulation of CBF could occur without the risks associated with extremes of arterial pressure, potentially improving therapy for those with cerebral ischemia of various etiologies. However, current literature is insufficiently robust to confirm an independent relationship between CO and CBF, and further studies with improved methodology are required before therapeutic interventions can be based on cardio-cerebral coupling.
KW - autoregulation
KW - cardiac output
KW - cerebral blood flow
KW - mean arterial pressure
KW - subarachnoid hemorrhage
UR - http://www.scopus.com/inward/record.url?scp=85102267760&partnerID=8YFLogxK
U2 - 10.1097/ANA.0000000000000768
DO - 10.1097/ANA.0000000000000768
M3 - Review Article
C2 - 33782372
AN - SCOPUS:85102267760
SN - 0898-4921
VL - 34
SP - 352
EP - 363
JO - Journal of Neurosurgical Anesthesiology
JF - Journal of Neurosurgical Anesthesiology
IS - 4
ER -