Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: A meta-rivalry model

Trung Thanh Ngo, Guang B Liu, Andrew Tilley, John D Pettigrew, Steven Miller

Research output: Contribution to journalArticleResearchpeer-review

20 Citations (Scopus)

Abstract

Binocular rivalry is an extraordinary visual phenomenon that has engaged investigators for centuries. Since its first report, there has been vigorous debate over how the brain achieves the perceptual alternations that occur when conflicting images are presented simultaneously, one to each eye. Opposing high-level/stimulus-representation models and low-level/eye-based models have been proposed to explain the phenomenon, recently merging into an amalgam view. Here, we provide evidence that during viewing of Diaz-Caneja stimuli, coherence rivalry -- in which aspects of each eye s presented image are perceptually regrouped into rivalling coherent images -- and eye rivalry operate via discrete neural mechanisms. We demonstrate that high-level brain activation by unilateral caloric vestibular stimulation shifts the predominance of perceived coherent images (coherence rivalry) but not half-field images (eye rivalry). This finding suggests that coherence rivalry (like conventional rivalry according to our previous studies) is mediated by interhemispheric switching at a high level, while eye rivalry is mediated by intrahemispheric mechanisms, most likely at a low level. Based on the present data, we further propose that Diaz-Caneja stimuli induce meta-rivalry whereby the discrete high- and low-level competitive processes themselves rival for visual consciousness.
Original languageEnglish
Pages (from-to)2685 - 2699
Number of pages15
JournalVision Research
Volume47
Issue number21
Publication statusPublished - 2007

Cite this