Bubble dynamics in bubbling fluidized beds of ellipsoidal particles

Siddhartha Shrestha, Shibo Kuang, Aibing Yu, Zongyan Zhou

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)


This article presents a CFD-DEM study on the effect of particle shape on bubble dynamics in bubbling fluidized beds. The particles used are ellipsoids, covering from disk-type to cylinder-type. The phenomena such as bubble coalescence and splitting are successfully generated, and the results are compared with literature, showing a good agreement. The results demonstrate that the bubble forming/rising regions and patterns are influenced significantly by particle shape. Ellipsoidal particles have asymmetrical bubble patterns with two or more circulation vortices while the bubbles for spherical particles form at the bed centerline and rise through the center of the bed. Hence, the vertical mass flux at the bed centerline for spheres is always positive, and ellipsoids have negative or positive vertical mass fluxes. The solid mixing estimated based on the dispersion coefficient revealed poor mixing for ellipsoids. Spherical particles have a larger bubble size and higher bubble rising velocity than ellipsoids.

Original languageEnglish
Article numbere16736
Number of pages17
JournalAIChE Journal
Issue number11
Publication statusPublished - Nov 2019


  • bubble dynamics
  • bubbling fluidized bed
  • ellipsoids

Cite this