TY - JOUR
T1 - Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways
AU - De Anda, Valerie
AU - Chen, Lin Xing
AU - Dombrowski, Nina
AU - Hua, Zheng Shuang
AU - Jiang, Hong Chen
AU - Banfield, Jillian F.
AU - Li, Wen Jun
AU - Baker, Brett J.
N1 - Funding Information:
We thank Dr. Thomas Brock for a career of transformative microbiological research and graciously allowing us to name Brockarchaeota in his honor. This work was funded by a Simons Foundation (Award number 687165), National Science Foundation DEB: Systematics and Biodiversity Sciences (grant number 1753661), and National Science Foundation MCB – Systems and Synthetic Biology (grant number 1817354) provided to BJB. We also thank Luke Mckay and William Inskeep for the 16S rRNA Brockarchaeota sequences from Washburn Spring Yellowstone National Park. We thank Andreas for providing the sediments from Guaymas Basin. Sampling in Guaymas Basin was supported by NSF Awards OCE-0647633 to Dr. Andreas P. Teske. The sequencing was partially conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 provided to ND. This work was partially supported by National Natural Science Foundation of China (Nos. 91951205 and 91751206).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/4/23
Y1 - 2021/4/23
N2 - Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, ‘Brockarchaeota’, named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.
AB - Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, ‘Brockarchaeota’, named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.
UR - http://www.scopus.com/inward/record.url?scp=85104881470&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-22736-6
DO - 10.1038/s41467-021-22736-6
M3 - Article
C2 - 33893309
AN - SCOPUS:85104881470
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 2404
ER -