Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment.

Anund Gururajan, Rachel Anne Hill, Maarten van den Buuse

Research output: Contribution to journalArticleResearchpeer-review

20 Citations (Scopus)


Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin involved in neurodevelopment, neuroprotection and synaptic plasticity. It is also implicated in a range of psychiatric disorders such as schizophrenia, depression and post-traumatic stress disorder. Stress during adolescence/young adulthood can have long-term psychiatric and cognitive consequences, however it is unknown how altered BDNF signaling is involved in such effects. Here we investigated whether a congenital deficit in BDNF availability in rats increases vulnerability to the long-term effects of the stress hormone, corticosterone (CORT). Compared to wildtype (WT) littermates, BDNF heterozygous (HET) rats showed higher body weights and minor developmental changes, such as reduced relative brain and pituitary weight. These animals furthermore showed deficits in short-term spatial memory in the Y-maze and in prepulse inhibition and startle, but not in object-recognition memory. CORT treatment induced impairments in novel-object recognition memory in both genotypes but disrupted fear conditioning extinction learning in BDNF HET rats only. These results show selective behavioral changes in BDNF HET rats, at baseline or after chronic CORT treatment and add to our understanding of the role of BDNF and its interaction with stress. Importantly, this study demonstrates the utility of the BDNF HET rat in investigations into the pathophysiology of various psychiatric disorders.
Original languageEnglish
Pages (from-to)297-310
Number of pages14
Issue number284
Publication statusPublished - 17 Oct 2015
Externally publishedYes

Cite this