Abstract
Time-of-flight neutron imaging has now progressed to the point where high-resolution energy-resolved imaging is possible. Among many other applications, this technology allows the imaging of elastic strain fields within polycrystalline solids using a geometry identical to a traditional radiograph. 3D strain tomography from measurements such as these has been a current topic of research over the past decade. The Authors recently solved this tomography problem and provided a reconstruction algorithm for the set of all systems subject to external loads in the absence of residual or eigenstrain. In this paper we provide an overview of a recent experiment carried out at the J-PARC pulsed neutron source in Japan focused on demonstrating this algorithm. This now represents the first-ever practical demonstration of Bragg-edge neutron transmission strain tomography in a non-axisymmetric system. The results of the experiment are presented along with validation of the reconstructed field through Digital Image Correlation and traditional constant wavelength neutron strain scanning within the Australian Centre for Neutron Scattering at ANSTO. An outlook on potential strategies for reconstruction in the general case is also provided.
Original language | English |
---|---|
Title of host publication | 9th Australasian Congress on Applied Mechanics, ACAM 2017 |
Publisher | National Committee on Theoretical and Applied Mechanics (USNC/TAM) |
ISBN (Electronic) | 9781925627022 |
Publication status | Published - 2017 |
Externally published | Yes |
Event | Australasian Congress on Applied Mechanics 2017 - University of New South Wales, Sydney, Australia Duration: 27 Nov 2017 → 29 Nov 2017 Conference number: 9th https://acam9.com.au/ |
Conference
Conference | Australasian Congress on Applied Mechanics 2017 |
---|---|
Abbreviated title | ACAM 2017 |
Country/Territory | Australia |
City | Sydney |
Period | 27/11/17 → 29/11/17 |
Internet address |
Keywords
- Bragg-edge
- Neutron
- Strain tomography