Bipolar disorder in the balance

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Bipolar disorder (BD) is a severe mood disorder that lacks established electrophysiological, neuroimaging or biological markers to assist with both diagnosis and monitoring disease severity. This study’s aim is to describe the potential of new neurophysiological features assistive in BD diagnosis and severity measurement utilizing the recording of electrical activity from the outer ear canal called Electrovestibulography (EVestG). From EVestG data sensory vestibulo-acoustic features were extracted from a single supine-vertical translation stimulus to distinguish 50 depressed and partly remitted/remitted bipolar disorder patients [18 symptomatic (BD-S, MADRS > 19), 32 reduced symptomatic (BD-R, MADRS ≤ 19)] and 31 age and gender matched healthy individuals (controls). Six features were extracted from the measured firing pattern interval histogram and the extracted shape of the average field potential response. Five of the six features had low but significant correlations (p < 0.05) with the MADRS assessment. Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 75–79%, 84–86%, 76–85% and 79–82% accuracy for separation of control from BD, BD-S and BD-R as well as BD-S from BD-R groups, respectively. The main limitation of this study was the inability to fully disentangle the impact of prescribed medication from the responses recorded. A mix of stationary and movement evoked EVestG features produced good discrimination between control and BD patients whether BD-S or BD-R. Moreover, BD-S and BD-R appear to have measurably different pathophysiological manifestations. The firing pattern features used were dissimilar to those observed in a prior major depressive disorder study.

Original languageEnglish
Number of pages15
JournalEuropean Archives of Psychiatry and Clinical Neuroscience
DOIs
Publication statusAccepted/In press - 1 Aug 2018

Keywords

  • Biological markers
  • Bipolar disorder
  • Depression
  • Electrovestibulography
  • Neurobiology
  • Vestibular

Cite this

@article{dcd0f35f87504f7d9e2e4768a36a91c2,
title = "Bipolar disorder in the balance",
abstract = "Bipolar disorder (BD) is a severe mood disorder that lacks established electrophysiological, neuroimaging or biological markers to assist with both diagnosis and monitoring disease severity. This study’s aim is to describe the potential of new neurophysiological features assistive in BD diagnosis and severity measurement utilizing the recording of electrical activity from the outer ear canal called Electrovestibulography (EVestG). From EVestG data sensory vestibulo-acoustic features were extracted from a single supine-vertical translation stimulus to distinguish 50 depressed and partly remitted/remitted bipolar disorder patients [18 symptomatic (BD-S, MADRS > 19), 32 reduced symptomatic (BD-R, MADRS ≤ 19)] and 31 age and gender matched healthy individuals (controls). Six features were extracted from the measured firing pattern interval histogram and the extracted shape of the average field potential response. Five of the six features had low but significant correlations (p < 0.05) with the MADRS assessment. Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 75–79{\%}, 84–86{\%}, 76–85{\%} and 79–82{\%} accuracy for separation of control from BD, BD-S and BD-R as well as BD-S from BD-R groups, respectively. The main limitation of this study was the inability to fully disentangle the impact of prescribed medication from the responses recorded. A mix of stationary and movement evoked EVestG features produced good discrimination between control and BD patients whether BD-S or BD-R. Moreover, BD-S and BD-R appear to have measurably different pathophysiological manifestations. The firing pattern features used were dissimilar to those observed in a prior major depressive disorder study.",
keywords = "Biological markers, Bipolar disorder, Depression, Electrovestibulography, Neurobiology, Vestibular",
author = "Lithgow, {Brian J.} and Zahra Moussavi and Caroline Gurvich and Jayashri Kulkarni and Maller, {Jerome J.} and Fitzgerald, {Paul B.}",
year = "2018",
month = "8",
day = "1",
doi = "10.1007/s00406-018-0935-x",
language = "English",
journal = "European Archives of Psychiatry and Clinical Neuroscience",
issn = "0940-1334",
publisher = "Springer-Verlag London Ltd.",

}

TY - JOUR

T1 - Bipolar disorder in the balance

AU - Lithgow, Brian J.

AU - Moussavi, Zahra

AU - Gurvich, Caroline

AU - Kulkarni, Jayashri

AU - Maller, Jerome J.

AU - Fitzgerald, Paul B.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Bipolar disorder (BD) is a severe mood disorder that lacks established electrophysiological, neuroimaging or biological markers to assist with both diagnosis and monitoring disease severity. This study’s aim is to describe the potential of new neurophysiological features assistive in BD diagnosis and severity measurement utilizing the recording of electrical activity from the outer ear canal called Electrovestibulography (EVestG). From EVestG data sensory vestibulo-acoustic features were extracted from a single supine-vertical translation stimulus to distinguish 50 depressed and partly remitted/remitted bipolar disorder patients [18 symptomatic (BD-S, MADRS > 19), 32 reduced symptomatic (BD-R, MADRS ≤ 19)] and 31 age and gender matched healthy individuals (controls). Six features were extracted from the measured firing pattern interval histogram and the extracted shape of the average field potential response. Five of the six features had low but significant correlations (p < 0.05) with the MADRS assessment. Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 75–79%, 84–86%, 76–85% and 79–82% accuracy for separation of control from BD, BD-S and BD-R as well as BD-S from BD-R groups, respectively. The main limitation of this study was the inability to fully disentangle the impact of prescribed medication from the responses recorded. A mix of stationary and movement evoked EVestG features produced good discrimination between control and BD patients whether BD-S or BD-R. Moreover, BD-S and BD-R appear to have measurably different pathophysiological manifestations. The firing pattern features used were dissimilar to those observed in a prior major depressive disorder study.

AB - Bipolar disorder (BD) is a severe mood disorder that lacks established electrophysiological, neuroimaging or biological markers to assist with both diagnosis and monitoring disease severity. This study’s aim is to describe the potential of new neurophysiological features assistive in BD diagnosis and severity measurement utilizing the recording of electrical activity from the outer ear canal called Electrovestibulography (EVestG). From EVestG data sensory vestibulo-acoustic features were extracted from a single supine-vertical translation stimulus to distinguish 50 depressed and partly remitted/remitted bipolar disorder patients [18 symptomatic (BD-S, MADRS > 19), 32 reduced symptomatic (BD-R, MADRS ≤ 19)] and 31 age and gender matched healthy individuals (controls). Six features were extracted from the measured firing pattern interval histogram and the extracted shape of the average field potential response. Five of the six features had low but significant correlations (p < 0.05) with the MADRS assessment. Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 75–79%, 84–86%, 76–85% and 79–82% accuracy for separation of control from BD, BD-S and BD-R as well as BD-S from BD-R groups, respectively. The main limitation of this study was the inability to fully disentangle the impact of prescribed medication from the responses recorded. A mix of stationary and movement evoked EVestG features produced good discrimination between control and BD patients whether BD-S or BD-R. Moreover, BD-S and BD-R appear to have measurably different pathophysiological manifestations. The firing pattern features used were dissimilar to those observed in a prior major depressive disorder study.

KW - Biological markers

KW - Bipolar disorder

KW - Depression

KW - Electrovestibulography

KW - Neurobiology

KW - Vestibular

UR - http://www.scopus.com/inward/record.url?scp=85051748006&partnerID=8YFLogxK

U2 - 10.1007/s00406-018-0935-x

DO - 10.1007/s00406-018-0935-x

M3 - Article

JO - European Archives of Psychiatry and Clinical Neuroscience

JF - European Archives of Psychiatry and Clinical Neuroscience

SN - 0940-1334

ER -