Abstract
We fabricate a bioinspired spindle-knotted fiber (BSF) via an improved method of Rayleigh instability break-up droplets. The BSF is composed of multi-level spindle-knots that can generate continuous gradients of surface energy and different Laplace pressures. We investigate the water collecting ability of BSF under humid environments and observe how the spindle-knots collect water from the environmental humidity by means of cooperative driving forces resulting from individual spindle-knots. We reveal that the multi-level spindle-knots of BSF may play a role in water collection compared with uniform fibers without any spindle-knots. We demonstrate that the size effect of a spindle-knot is related to the capillary adhesion of hanging-drops, thus BSF has a much higher water collection efficiency in humid environments than normal uniform fibers. The mechanism is elucidated further to open a model of high efficiency materials for water collection.
Original language | English |
---|---|
Pages (from-to) | 11450-11454 |
Number of pages | 5 |
Journal | Soft Matter |
Volume | 8 |
Issue number | 45 |
DOIs | |
Publication status | Published - 7 Dec 2012 |
Externally published | Yes |