Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

LIGO and Virgo Collaboration

Research output: Contribution to journalArticleResearchpeer-review

19 Citations (Scopus)

Abstract

We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

Original languageEnglish
Article numberL24
Number of pages30
JournalAstrophysical Journal Letters
Volume882
Issue number2
DOIs
Publication statusPublished - 10 Sep 2019

Keywords

  • black holes
  • gravitational waves
  • statistical

Cite this

@article{3741255753c24f4ab950338daa89db97,
title = "Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo",
abstract = "We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1{\%} of BHs more massive than 45 M and a power-law index of (90{\%} credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93{\%} probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90{\%} credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.",
keywords = "black holes, gravitational waves, statistical",
author = "Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and S. Abraham and F. Acernese and K. Ackley and C. Adams and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and Aloy, {M. A.} and Altin, {P. A.} and A. Amato and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and Aston, {S. M.} and P. Astone and F. Aubin and P. Aufmuth and K. Aultoneal and C. Austin and V. Avendano and A. Avila-Alvarez and S. Babak and P. Bacon and F. Badaracco and Bader, {M. K.M.} and S. Bae and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and S. Banagiri and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and K. Barkett and S. Barnum and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and D. Barta and J. Bartlett and I. Bartos and R. Bassiri and A. Basti and M. Bawaj and Bayley, {J. C.} and M. Bazzan and B. B{\'e}csy and M. Bejger and I. Belahcene and Bell, {A. S.} and D. Beniwal and Berger, {B. K.} and G. Bergmann and S. Bernuzzi and Bero, {J. J.} and Berry, {C. P.L.} and D. Bersanetti and A. Bertolini and J. Betzwieser and R. Bhandare and J. Bidler and Bilenko, {I. A.} and Bilgili, {S. A.} and G. Billingsley and J. Birch and R. Birney and O. Birnholtz and S. Biscans and S. Biscoveanu and A. Bisht and M. Bitossi and Bizouard, {M. A.} and Blackburn, {J. K.} and Blair, {C. D.} and Blair, {D. G.} and Blair, {R. M.} and S. Bloemen and N. Bode and M. Boer and Y. Boetzel and G. Bogaert and F. Bondu and E. Bonilla and R. Bonnand and P. Booker and Boom, {B. A.} and Booth, {C. D.} and R. Bork and V. Boschi and S. Bose and K. Bossie and V. Bossilkov and J. Bosveld and Y. Bouffanais and A. Bozzi and C. Bradaschia and Brady, {P. R.} and A. Bramley and M. Branchesi and Brau, {J. E.} and T. Briant and Briggs, {J. H.} and F. Brighenti and A. Brillet and M. Brinkmann and V. Brisson and P. Brockill and Brooks, {A. F.} and Brown, {D. D.} and S. Brunett and A. Buikema and T. Bulik and Bulten, {H. J.} and A. Buonanno and R. Buscicchio and D. Buskulic and C. Buy and Byer, {R. L.} and M. Cabero and L. Cadonati and G. Cagnoli and C. Cahillane and Bustillo, {J. Calder{\'o}n} and Callister, {T. A.} and E. Calloni and Camp, {J. B.} and Campbell, {W. A.} and M. Canepa and Cannon, {K. C.} and H. Cao and J. Cao and E. Capocasa and F. Carbognani and S. Caride and Carney, {M. F.} and G. Carullo and Diaz, {J. Casanueva} and C. Casentini and S. Caudill and M. Cavagli{\`a} and F. Cavalier and R. Cavalieri and G. Cella and P. Cerd{\'a}-Dur{\'a}n and G. Cerretani and E. Cesarini and O. Chaibi and K. Chakravarti and Chamberlin, {S. J.} and M. Chan and S. Chao and P. Charlton and Chase, {E. A.} and E. Chassande-Mottin and D. Chatterjee and M. Chaturvedi and K. Chatziioannou and Cheeseboro, {B. D.} and Chen, {H. Y.} and X. Chen and Y. Chen and Cheng, {H. P.} and Cheong, {C. K.} and Chia, {H. Y.} and A. Chincarini and A. Chiummo and G. Cho and Cho, {H. S.} and M. Cho and N. Christensen and Q. Chu and S. Chua and Chung, {K. W.} and S. Chung and G. Ciani and Ciobanu, {A. A.} and R. Ciolfi and F. Cipriano and A. Cirone and F. Clara and Clark, {J. A.} and P. Clearwater and F. Cleva and C. Cocchieri and E. Coccia and Cohadon, {P. F.} and D. Cohen and R. Colgan and M. Colleoni and Collette, {C. G.} and C. Collins and Cominsky, {L. R.} and M. Constancio and L. Conti and Cooper, {S. J.} and P. Corban and Corbitt, {T. R.} and I. Cordero-Carri{\'o}n and Corley, {K. R.} and N. Cornish and A. Corsi and S. Cortese and Costa, {C. A.} and R. Cotesta and Coughlin, {M. W.} and Coughlin, {S. B.} and Coulon, {J. P.} and Countryman, {S. T.} and P. Couvares and Covas, {P. B.} and Cowan, {E. E.} and Coward, {D. M.} and Easter, {P. J.} and B. Goncharov and Lasky, {P. D.} and Y. Levin and Meadors, {G. D.} and L. Sammut and Smith, {R. J.E.} and C. Talbot and E. Thrane and C. Whittle and Zhu, {X. J.} and {Hernandez Vivanco}, {Francisco Javier} and {LIGO and Virgo Collaboration}",
year = "2019",
month = "9",
day = "10",
doi = "10.3847/2041-8213/ab3800",
language = "English",
volume = "882",
journal = "The Astrophysical Journal Letters",
issn = "2041-8205",
publisher = "American Astronomical Society",
number = "2",

}

Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. / LIGO and Virgo Collaboration.

In: Astrophysical Journal Letters, Vol. 882, No. 2, L24, 10.09.2019.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, G.

AU - Allocca, A.

AU - Aloy, M. A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Aston, S. M.

AU - Astone, P.

AU - Aubin, F.

AU - Aufmuth, P.

AU - Aultoneal, K.

AU - Austin, C.

AU - Avendano, V.

AU - Avila-Alvarez, A.

AU - Babak, S.

AU - Bacon, P.

AU - Badaracco, F.

AU - Bader, M. K.M.

AU - Bae, S.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Banagiri, S.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barkett, K.

AU - Barnum, S.

AU - Barone, F.

AU - Barr, B.

AU - Barsotti, L.

AU - Barsuglia, M.

AU - Barta, D.

AU - Bartlett, J.

AU - Bartos, I.

AU - Bassiri, R.

AU - Basti, A.

AU - Bawaj, M.

AU - Bayley, J. C.

AU - Bazzan, M.

AU - Bécsy, B.

AU - Bejger, M.

AU - Belahcene, I.

AU - Bell, A. S.

AU - Beniwal, D.

AU - Berger, B. K.

AU - Bergmann, G.

AU - Bernuzzi, S.

AU - Bero, J. J.

AU - Berry, C. P.L.

AU - Bersanetti, D.

AU - Bertolini, A.

AU - Betzwieser, J.

AU - Bhandare, R.

AU - Bidler, J.

AU - Bilenko, I. A.

AU - Bilgili, S. A.

AU - Billingsley, G.

AU - Birch, J.

AU - Birney, R.

AU - Birnholtz, O.

AU - Biscans, S.

AU - Biscoveanu, S.

AU - Bisht, A.

AU - Bitossi, M.

AU - Bizouard, M. A.

AU - Blackburn, J. K.

AU - Blair, C. D.

AU - Blair, D. G.

AU - Blair, R. M.

AU - Bloemen, S.

AU - Bode, N.

AU - Boer, M.

AU - Boetzel, Y.

AU - Bogaert, G.

AU - Bondu, F.

AU - Bonilla, E.

AU - Bonnand, R.

AU - Booker, P.

AU - Boom, B. A.

AU - Booth, C. D.

AU - Bork, R.

AU - Boschi, V.

AU - Bose, S.

AU - Bossie, K.

AU - Bossilkov, V.

AU - Bosveld, J.

AU - Bouffanais, Y.

AU - Bozzi, A.

AU - Bradaschia, C.

AU - Brady, P. R.

AU - Bramley, A.

AU - Branchesi, M.

AU - Brau, J. E.

AU - Briant, T.

AU - Briggs, J. H.

AU - Brighenti, F.

AU - Brillet, A.

AU - Brinkmann, M.

AU - Brisson, V.

AU - Brockill, P.

AU - Brooks, A. F.

AU - Brown, D. D.

AU - Brunett, S.

AU - Buikema, A.

AU - Bulik, T.

AU - Bulten, H. J.

AU - Buonanno, A.

AU - Buscicchio, R.

AU - Buskulic, D.

AU - Buy, C.

AU - Byer, R. L.

AU - Cabero, M.

AU - Cadonati, L.

AU - Cagnoli, G.

AU - Cahillane, C.

AU - Bustillo, J. Calderón

AU - Callister, T. A.

AU - Calloni, E.

AU - Camp, J. B.

AU - Campbell, W. A.

AU - Canepa, M.

AU - Cannon, K. C.

AU - Cao, H.

AU - Cao, J.

AU - Capocasa, E.

AU - Carbognani, F.

AU - Caride, S.

AU - Carney, M. F.

AU - Carullo, G.

AU - Diaz, J. Casanueva

AU - Casentini, C.

AU - Caudill, S.

AU - Cavaglià, M.

AU - Cavalier, F.

AU - Cavalieri, R.

AU - Cella, G.

AU - Cerdá-Durán, P.

AU - Cerretani, G.

AU - Cesarini, E.

AU - Chaibi, O.

AU - Chakravarti, K.

AU - Chamberlin, S. J.

AU - Chan, M.

AU - Chao, S.

AU - Charlton, P.

AU - Chase, E. A.

AU - Chassande-Mottin, E.

AU - Chatterjee, D.

AU - Chaturvedi, M.

AU - Chatziioannou, K.

AU - Cheeseboro, B. D.

AU - Chen, H. Y.

AU - Chen, X.

AU - Chen, Y.

AU - Cheng, H. P.

AU - Cheong, C. K.

AU - Chia, H. Y.

AU - Chincarini, A.

AU - Chiummo, A.

AU - Cho, G.

AU - Cho, H. S.

AU - Cho, M.

AU - Christensen, N.

AU - Chu, Q.

AU - Chua, S.

AU - Chung, K. W.

AU - Chung, S.

AU - Ciani, G.

AU - Ciobanu, A. A.

AU - Ciolfi, R.

AU - Cipriano, F.

AU - Cirone, A.

AU - Clara, F.

AU - Clark, J. A.

AU - Clearwater, P.

AU - Cleva, F.

AU - Cocchieri, C.

AU - Coccia, E.

AU - Cohadon, P. F.

AU - Cohen, D.

AU - Colgan, R.

AU - Colleoni, M.

AU - Collette, C. G.

AU - Collins, C.

AU - Cominsky, L. R.

AU - Constancio, M.

AU - Conti, L.

AU - Cooper, S. J.

AU - Corban, P.

AU - Corbitt, T. R.

AU - Cordero-Carrión, I.

AU - Corley, K. R.

AU - Cornish, N.

AU - Corsi, A.

AU - Cortese, S.

AU - Costa, C. A.

AU - Cotesta, R.

AU - Coughlin, M. W.

AU - Coughlin, S. B.

AU - Coulon, J. P.

AU - Countryman, S. T.

AU - Couvares, P.

AU - Covas, P. B.

AU - Cowan, E. E.

AU - Coward, D. M.

AU - Easter, P. J.

AU - Goncharov, B.

AU - Lasky, P. D.

AU - Levin, Y.

AU - Meadors, G. D.

AU - Sammut, L.

AU - Smith, R. J.E.

AU - Talbot, C.

AU - Thrane, E.

AU - Whittle, C.

AU - Zhu, X. J.

AU - Hernandez Vivanco, Francisco Javier

AU - LIGO and Virgo Collaboration

PY - 2019/9/10

Y1 - 2019/9/10

N2 - We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

AB - We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

KW - black holes

KW - gravitational waves

KW - statistical

UR - http://www.scopus.com/inward/record.url?scp=85073031675&partnerID=8YFLogxK

U2 - 10.3847/2041-8213/ab3800

DO - 10.3847/2041-8213/ab3800

M3 - Article

AN - SCOPUS:85073031675

VL - 882

JO - The Astrophysical Journal Letters

JF - The Astrophysical Journal Letters

SN - 2041-8205

IS - 2

M1 - L24

ER -