Beware the black box: investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics

Christopher Walmsley, Matthew R McCurry, Phillip Clausen, Colin McHenry

Research output: Contribution to journalArticleResearchpeer-review

23 Citations (Scopus)


Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be reasonable are often assumed to have little influence on the results and their interpretation. HERE WE REPORT AN EXTENSIVE SENSITIVITY ANALYSIS WHERE HIGH RESOLUTION FINITE ELEMENT (FE) MODELS OF MANDIBLES FROM SEVEN SPECIES OF CROCODILE WERE ANALYSED UNDER LOADS TYPICAL FOR COMPARATIVE ANALYSIS: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.
Original languageEnglish
Pages (from-to)1 - 41
Number of pages41
Issue number1 (Art. No.: e204)
Publication statusPublished - 2013

Cite this