Bayesian mixed-frequency quantile vector autoregression: eliciting tail risks of monthly US GDP

Matteo Iacopini, Aubrey Poon, Luca Rossini, Dan Zhu

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)

Abstract

Timely characterizations of risks in economic and financial systems play an essential role in both economic policy and private sector decisions. However, the informational content of low-frequency variables and the results from conditional mean models provide only limited evidence to investigate this problem. We propose a novel mixed-frequency quantile vector autoregression (MF-QVAR) model to address this issue. Inspired by the univariate Bayesian quantile regression literature, the multivariate asymmetric Laplace distribution is exploited under the Bayesian framework to form the likelihood. A data augmentation approach coupled with a precision sampler efficiently estimates the missing low-frequency variables at higher frequencies under the state-space representation. The proposed methods allow us to analyse conditional quantiles for multiple variables of interest and to derive quantile-related risk measures at high frequency, thus enabling timely policy interventions. The main application of the model is to detect the vulnerability in the US economy and then to nowcast conditional quantiles of the US GDP, which is strictly related to the quantification of Value-at-Risk, the Expected Shortfall and distance among percentiles of real GDP nowcasts.

Original languageEnglish
Article number104757
Number of pages16
JournalJournal of Economic Dynamics and Control
Volume157
DOIs
Publication statusPublished - Dec 2023

Keywords

  • Bayesian inference
  • Mixed-frequency
  • Multivariate quantile regression
  • Nowcasting
  • VAR

Cite this