Projects per year
Abstract
Gram-negative bacteria utilize secretion systems to export substrates into their surrounding environment or directly into neighboring cells. These substrates are proteins that function to promote bacterial survival: by facilitating nutrient collection, disabling competitor species or, for pathogens, to disable host defenses. Following a rapid development of computational techniques, a growing number of substrates have been discovered and subsequently validated by wet lab experiments. To date, several online databases have been developed to catalogue these substrates but they have limited user options for in-depth analysis, and typically focus on a single type of secreted substrate. We therefore developed a universal platform, BastionHub, that incorporates extensive functional modules to facilitate substrate analysis and integrates the five major Gram-negative secreted substrate types (i.e. from types I-IV and VI secretion systems). To our knowledge, BastionHub is not only the most comprehensive online database available, it is also the first to incorporate substrates secreted by type I or type II secretion systems. By providing the most up-to-date details of secreted substrates and state-of-the-art prediction and visualized relationship analysis tools, BastionHub will be an important platform that can assist biologists in uncovering novel substrates and formulating new hypotheses. BastionHub is freely available at http://bastionhub.erc.monash.edu/.
Original language | English |
---|---|
Pages (from-to) | D651-D659 |
Number of pages | 9 |
Journal | Nucleic Acids Research |
Volume | 49 |
Issue number | D1 |
DOIs | |
Publication status | Published - 8 Jan 2021 |
Projects
- 4 Finished
-
Integrative systems pharmacology, neutron reflectometry and molecular dynamics approaches to unravelling the interaction between polymyxins and bacterial membranes
Li, J., Shen, H., Velkov, T., Song, J. & Schreiber, F.
1/01/18 → 31/12/23
Project: Research
-
An integrated virtual cell approach towards elucidating the systems pharmacology of antibiotics against Pseudomonas aeruginosa
Li, J., Song, J. & Schreiber, F.
National Health and Medical Research Council (NHMRC) (Australia)
1/01/17 → 31/12/20
Project: Research
-
NHMRC Program in Cellular Microbiology
Lithgow, T., Dougan, G. & Strugnell, R. A.
National Health and Medical Research Council (NHMRC) (Australia)
1/01/16 → 31/12/20
Project: Research