BaLeNAS: Differentiable Architecture Search via the Bayesian Learning rule

Miao Zhang, Shirui Pan, Xiaojun Chang, Steven Su, Jilin Hu, Gholamreza Haffari, Bin Yang

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

17 Citations (Scopus)

Abstract

Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost through weight sharing and continuous relaxation. However, more recent works find that existing differentiable NAS techniques struggle to outperform naive baselines, yielding deteriorative architectures as the search proceeds. Rather than directly optimizing the architecture parameters, this paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions. By leveraging the natural-gradient variational inference (NGVI), the architecture distribution can be easily optimized based on existing codebases without incurring more memory and computational consumption. We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability. The experimental results on NAS benchmark datasets confirm the significant improvements the proposed framework can make. In addition, instead of simply applying the argmax on the learned parameters, we further leverage the recently-proposed training-free proxies in NAS to select the optimal architecture from a group architectures drawn from the optimized distribution, where we achieve state-of-the-art results on the NAS-Bench-201 and NAS-Bench-1shot1 benchmarks. Our best architecture in the DARTS search space also obtains competitive test errors with 2.37%, 15.72%, and 24.2% on CIFAR-10, CIFAR-100, and ImageNet, respectively.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
EditorsKristin Dana, Gang Hua, Stefan Roth, Dimitris Samaras, Richa Singh
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages11861-11870
Number of pages10
ISBN (Electronic)9781665469463
ISBN (Print)9781665469470
DOIs
Publication statusPublished - 2022
EventIEEE Conference on Computer Vision and Pattern Recognition 2022 - New Orleans, United States of America
Duration: 19 Jun 202224 Jun 2022
https://ieeexplore.ieee.org/xpl/conhome/9878378/proceeding (Proceedings)
https://cvpr2022.thecvf.com
https://cvpr2022.thecvf.com/ (Website)

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition 2022
Abbreviated titleCVPR 2022
Country/TerritoryUnited States of America
CityNew Orleans
Period19/06/2224/06/22
Internet address

Keywords

  • Deep learning architectures and techniques
  • Optimization methods

Cite this