TY - JOUR
T1 - Bacterial contamination of intravitreal needles by the ocular surface microbiome
AU - Ozkan, Jerome
AU - Coroneo, Minas
AU - Sandbach, Jennifer
AU - Subedi, Dinesh
AU - Willcox, Mark
AU - Thomas, Torsten
PY - 2021/1
Y1 - 2021/1
N2 - Purpose: The ocular surface microbiota are recognised as one of causative microorganisms in post-procedural endophthalmitis but in many cases the vitreous tap is culture negative. This study investigated bacterial contamination of intravitreal (IVT) needles using multiple approaches covering culturing, 16S rRNA gene sequencing, fluorescent in situ hybridisation (FISH) and scanning electron microscopy (SEM). Methods: IVT needles were obtained immediately after injection from patients undergoing treatment for predominantly age-related macular degeneration. Eighteen needles were analysed by culturing on chocolate blood agar. In addition, 40 needles were analysed by extracting DNA and paired-end sequencing of the 16S rRNA gene. Sequences were quality filtered (USEARCH), taxonomically classified (SILVA) and contaminant filtered (DECONTAM). Nine needles were analysed by either FISH using the bacterial probe EUB338 or SEM. Results: Using culturing, three bacteria were identified from 5 of 18 needles (28%) - Kocuria kristinae, Staphylococcus hominis and Sphingomonas paucimobilis. The negative control needles showed no growth. Following rigorous data filtering, bacterial community analysis using 16S rRNA gene sequencing showed the presence of predominantly Corynebacterium but also Pseudomonas, Acinetobacter, Sphingomonas, Staphylococcus and Bacillus on the needles. Cocci-shaped cells in a tetrad formation were observed using FISH, while SEM images showed cocci-shaped bacteria in pairs and irregular tetrads. Conclusions: The study showed evidence for a large diversity of bacteria on IVT needles and visually confirmed their adherence. The diversity was similar to that found on the ocular surface and in conjunctival tissue. This suggests the risk of exogenous endophthalmitis remains even with sterilization of the conjunctival surface.
AB - Purpose: The ocular surface microbiota are recognised as one of causative microorganisms in post-procedural endophthalmitis but in many cases the vitreous tap is culture negative. This study investigated bacterial contamination of intravitreal (IVT) needles using multiple approaches covering culturing, 16S rRNA gene sequencing, fluorescent in situ hybridisation (FISH) and scanning electron microscopy (SEM). Methods: IVT needles were obtained immediately after injection from patients undergoing treatment for predominantly age-related macular degeneration. Eighteen needles were analysed by culturing on chocolate blood agar. In addition, 40 needles were analysed by extracting DNA and paired-end sequencing of the 16S rRNA gene. Sequences were quality filtered (USEARCH), taxonomically classified (SILVA) and contaminant filtered (DECONTAM). Nine needles were analysed by either FISH using the bacterial probe EUB338 or SEM. Results: Using culturing, three bacteria were identified from 5 of 18 needles (28%) - Kocuria kristinae, Staphylococcus hominis and Sphingomonas paucimobilis. The negative control needles showed no growth. Following rigorous data filtering, bacterial community analysis using 16S rRNA gene sequencing showed the presence of predominantly Corynebacterium but also Pseudomonas, Acinetobacter, Sphingomonas, Staphylococcus and Bacillus on the needles. Cocci-shaped cells in a tetrad formation were observed using FISH, while SEM images showed cocci-shaped bacteria in pairs and irregular tetrads. Conclusions: The study showed evidence for a large diversity of bacteria on IVT needles and visually confirmed their adherence. The diversity was similar to that found on the ocular surface and in conjunctival tissue. This suggests the risk of exogenous endophthalmitis remains even with sterilization of the conjunctival surface.
KW - 16S rRNA gene sequencing
KW - Age-related macular degeneration
KW - Bacterial contamination
KW - Conjunctiva
KW - Intravitreal needle
KW - Microbiology
KW - Ocular microbiome
UR - http://www.scopus.com/inward/record.url?scp=85086479647&partnerID=8YFLogxK
U2 - 10.1016/j.jtos.2020.05.010
DO - 10.1016/j.jtos.2020.05.010
M3 - Article
C2 - 32497656
AN - SCOPUS:85086479647
SN - 1542-0124
VL - 19
SP - 169
EP - 175
JO - The Ocular Surface
JF - The Ocular Surface
ER -