Automated pixel-level pavement distress detection based on stereo vision and deep learning

Jinchao Guan, Xu Yang, Ling Ding, Xiaoyun Cheng, Vincent C.S. Lee, Can Jin

Research output: Contribution to journalArticleResearchpeer-review

2 Citations (Scopus)


Automated pavement distress detection based on 2D images is facing various challenges. To efficiently complete the crack and pothole segmentation in a practical environment, an automated pixel-level pavement distress detection framework integrating stereo vision and deep learning is developed in this study. Based on the multi-view stereo imaging system, multi-feature pavement image datasets containing color images, depth images and color-depth overlapped images are established, providing a new perspective for deep learning. To alleviate computational burden, a modified U-net deep learning architecture introducing depthwise separable convolution is proposed for crack and pothole segmentation. These methods are tested in asphalt roads with different circumstances. The results show that the 3D pavement image achieves millimeter-level accuracy. The enhanced 3D crack segmentation model outperforms other models in terms of segmentation accuracy and inference speed. After obtaining the high-resolution pothole segmentation map, the automated pothole volume measurement is realized with high accuracy.

Original languageEnglish
Article number103788
Number of pages18
JournalAutomation in Construction
Publication statusPublished - Sep 2021


  • Crack and pothole segmentation
  • Deep learning
  • Depthwise separable convolution
  • Pavement distress detection
  • Stereo vision
  • U-net

Cite this