Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1SERCA2a gene delivery in experimental heart failure

Justin A. Mariani, Anka Smolic, Arthur Preovolos, Melissa J. Byrne, John M. Power, David M. Kaye

Research output: Contribution to journalArticleResearchpeer-review

44 Citations (Scopus)

Abstract

AimsDown-regulation of sarcoplasmic reticulum calcium ATPase (SERCA2a) is a key molecular abnormality in heart failure (HF), which is not currently addressed by specific pharmacotherapy. We sought to evaluate, in detail, the impact of augmented SERCA2a expression on left ventricular (LV) mechanics in a large animal model of HF.Methods and resultsHeart failure was induced in adult sheep by rapid pacing (180 b.p.m.) for 1 month, followed by delivery of adeno-associated virus (AAV) 2/1SERCA, using a percutaneous, recirculating system for gene delivery over a 10 min period. Left ventricular mechanics was investigated by echocardiography and conductance catheter measurements in sheep receiving AAV2/1SERCA2a after a further 4 weeks of pacing in comparison with untreated HF controls. Left ventricular function was significantly improved in the AAV2/1SERCA2a-treated group, despite continued pacing, as measured by fractional shortening (delta absolute FS, control -4.2 ± 1.5 vs. treatment 4.4 ± 1.5; P < 0.01) and conductance catheterization (delta Ees, control -1.22 ± 0.60 vs. treatment 0.65 ± 0.51; P < 0.05). Western blots showed an increase in SERCA protein in AAV2/1SERCA2a-treated animals, and an analysis of gene delivery showed no evidence of regional myocardial heterogeneity in the distribution of AAV2/1SERCA.ConclusionIn a large animal model, AAV2/1-mediated SERCA2a gene delivery using percutaneous, recirculating cardiac delivery leads to improved LV function.

Original languageEnglish
Pages (from-to)247-253
Number of pages7
JournalEuropean Journal of Heart Failure
Volume13
Issue number3
DOIs
Publication statusPublished - Mar 2011
Externally publishedYes

Keywords

  • Adeno-associated virus
  • Animal model
  • Gene delivery
  • Gene therapy

Cite this