Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors

Marcin Wegrecki, Tonatiuh A. Ocampo, Sachith D. Gunasinghe, Anouk von Borstel, Shin Yi Tin, Josephine F. Reijneveld, Thinh-Phat Cao, Benjamin S. Gully, Jérôme Le Nours, D. Branch Moody, Ildiko Van Rhijn, Jamie Rossjohn

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)


CD1a is a monomorphic antigen-presenting molecule on dendritic cells that presents lipids to αβ T cells. Whether CD1a represents a ligand for other immune receptors remains unknown. Here we use CD1a tetramers to show that CD1a is a ligand for Vδ1+ γδ T cells. Functional studies suggest that two γδ T cell receptors (TCRs) bound CD1a in a lipid-independent manner. The crystal structures of three Vγ4Vδ1 TCR-CD1a-lipid complexes reveal that the γδ TCR binds at the extreme far side and parallel to the long axis of the β-sheet floor of CD1a’s antigen-binding cleft. Here, the γδ TCR co-recognises the CD1a heavy chain and β2 microglobulin in a manner that is distinct from all other previously observed γδ TCR docking modalities. The ‘sideways’ and lipid antigen independent mode of autoreactive CD1a recognition induces TCR clustering on the cell surface and proximal T cell signalling as measured by CD3ζ phosphorylation. In contrast with the ‘end to end’ binding of αβ TCRs that typically contact carried antigens, autoreactive γδ TCRs support geometrically diverse approaches to CD1a, as well as antigen independent recognition.

Original languageEnglish
Article number3872
Number of pages15
JournalNature Communications
Issue number1
Publication statusPublished - Dec 2022

Cite this