TY - JOUR
T1 - Association between ambient temperature exposure and pregnancy outcomes in patients undergoing in vitro fertilization in Shanghai, China
T2 - a retrospective cohort study
AU - Geng, Lulu
AU - Yang, Yan
AU - Chen, Yifeng
AU - Ye, Tingting
AU - Qiu, Andong
AU - Bukulmez, Orhan
AU - Mol, Ben W.
AU - Norman, Robert J.
AU - Teng, Xiaoming
AU - Xiang, Jianjun
AU - Chen, Miaoxin
N1 - Funding Information:
This work was supported by a grant from the Clinical Research Plan of Shanghai Hospital Development Center [SHDC2020CR4080], a grant from the Science and Technology Commission of Shanghai Municipality [19411960500], and two grants from the National Natural Science Foundation of China [81871213, 81671468]. The funding bodies have not participated in the design of the study, the collection, analysis or interpretation of data, or in the writing the manuscript.
Funding Information:
B.W.M. is supported by a NHMRC Investigator grant (GNT1176437). B.W.M. reports consultancy for ObsEva, and research grants from Merck KGaA, Ferring and Guerbet. The other authors do not have conflicts of interest to declare.
Publisher Copyright:
# The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved.
PY - 2023/12
Y1 - 2023/12
N2 - STUDY QUESTION: Does ambient temperature exposure affect outcomes including clinical pregnancy and live birth in women undergoing IVF? SUMMARY ANSWER: Both extreme cold and hot ambient temperatures were significantly associated with adverse pregnancy outcomes of IVF cycles. WHAT IS KNOWN ALREADY: Heat exposure has been linked to adverse pregnancy outcomes worldwide. However, the effect of ambient temperature on infertile women undergoing IVF treatment is unclear. STUDY DESIGN, SIZE, DURATION: A retrospective cohort study was conducted from a database of 3452 infertile women who underwent their first fresh or frozen embryo transfer in the Shanghai First Maternity and Infant Hospital from April 2016 to December 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS: Daily mean ambient temperature exposure for each patient was obtained based on their residential address. Temperature-stratified multiple logistic regression analysis was performed to investigate associations between temperature exposure and pregnancy outcomes after controlling for confounders. Vulnerable sub-groups were identified using forest plots. MAIN RESULTS AND THE ROLE OF CHANCE: The clinical pregnancy rate and live birth rate were 45.7% and 37.1%, respectively. Regarding clinical pregnancy, a higher temperature during cold weather was significantly associated with a higher pregnancy rate in the period about 11 weeks before ovarian stimulation (adjusted odds ratio (aOR) ¼ 1.102, 95% CI: 1.012–1.201). Regarding live birth, an increased temperature during cold weather was significantly related to a higher live birth rate in the period after confirmation of clinical pregnancy or biochemical pregnancy, with the aORs of 6.299 (95% CI: 3.949–10.047) or 10.486 (95% CI: 5.609–19.620), respectively. However, a higher temperature during hot weather was negatively associated with the live birth rate in the periods after confirmation of clinical pregnancy or biochemical pregnancy, with the aORs at 0.186 (95% CI: 0.121–0.285) or 0.302 (95% CI: 0.224–0.406), respectively. Moreover, the decline in live birth rates during cold and hot weather was accompanied by increased rates of early miscarriage (P < 0.05). Stratified analyses identified susceptibility characteristics among the participants. LIMITATIONS, REASONS FOR CAUTION: Climate monitoring data were used to represent individual temperature exposure levels according to the patient’s residential address in the study. We were not able to obtain information of personal outdoor activity and use of indoor air conditioners in this retrospective study, which may affect actual temperature exposure. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights that the ambient temperature exposure should be taken into account during IVF treatment and afterwards. There is a need to be alert to extremes in cold and hot ambient temperatures, especially during the period of follicle development and pregnancy. With this knowledge, clinicians can scientifically determine the timing of IVF treatment and reinforce patients’ awareness of self-protection to minimize adverse pregnancy outcomes associated with extreme temperatures. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a grant from the Clinical Research Plan of Shanghai Hospital Development Center [SHDC2020CR4080], a grant from the Science and Technology Commission of Shanghai Municipality [19411960500], and two grants from the National Natural Science Foundation of China [81871213, 81671468]. B.W.M. is supported by a NHMRC Investigator grant (GNT1176437). B.W.M. reports consultancy for ObsEva, and research grants from Merck KGaA, Ferring and Guerbet. The other authors have no conflict of interest to declare.
AB - STUDY QUESTION: Does ambient temperature exposure affect outcomes including clinical pregnancy and live birth in women undergoing IVF? SUMMARY ANSWER: Both extreme cold and hot ambient temperatures were significantly associated with adverse pregnancy outcomes of IVF cycles. WHAT IS KNOWN ALREADY: Heat exposure has been linked to adverse pregnancy outcomes worldwide. However, the effect of ambient temperature on infertile women undergoing IVF treatment is unclear. STUDY DESIGN, SIZE, DURATION: A retrospective cohort study was conducted from a database of 3452 infertile women who underwent their first fresh or frozen embryo transfer in the Shanghai First Maternity and Infant Hospital from April 2016 to December 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS: Daily mean ambient temperature exposure for each patient was obtained based on their residential address. Temperature-stratified multiple logistic regression analysis was performed to investigate associations between temperature exposure and pregnancy outcomes after controlling for confounders. Vulnerable sub-groups were identified using forest plots. MAIN RESULTS AND THE ROLE OF CHANCE: The clinical pregnancy rate and live birth rate were 45.7% and 37.1%, respectively. Regarding clinical pregnancy, a higher temperature during cold weather was significantly associated with a higher pregnancy rate in the period about 11 weeks before ovarian stimulation (adjusted odds ratio (aOR) ¼ 1.102, 95% CI: 1.012–1.201). Regarding live birth, an increased temperature during cold weather was significantly related to a higher live birth rate in the period after confirmation of clinical pregnancy or biochemical pregnancy, with the aORs of 6.299 (95% CI: 3.949–10.047) or 10.486 (95% CI: 5.609–19.620), respectively. However, a higher temperature during hot weather was negatively associated with the live birth rate in the periods after confirmation of clinical pregnancy or biochemical pregnancy, with the aORs at 0.186 (95% CI: 0.121–0.285) or 0.302 (95% CI: 0.224–0.406), respectively. Moreover, the decline in live birth rates during cold and hot weather was accompanied by increased rates of early miscarriage (P < 0.05). Stratified analyses identified susceptibility characteristics among the participants. LIMITATIONS, REASONS FOR CAUTION: Climate monitoring data were used to represent individual temperature exposure levels according to the patient’s residential address in the study. We were not able to obtain information of personal outdoor activity and use of indoor air conditioners in this retrospective study, which may affect actual temperature exposure. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights that the ambient temperature exposure should be taken into account during IVF treatment and afterwards. There is a need to be alert to extremes in cold and hot ambient temperatures, especially during the period of follicle development and pregnancy. With this knowledge, clinicians can scientifically determine the timing of IVF treatment and reinforce patients’ awareness of self-protection to minimize adverse pregnancy outcomes associated with extreme temperatures. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a grant from the Clinical Research Plan of Shanghai Hospital Development Center [SHDC2020CR4080], a grant from the Science and Technology Commission of Shanghai Municipality [19411960500], and two grants from the National Natural Science Foundation of China [81871213, 81671468]. B.W.M. is supported by a NHMRC Investigator grant (GNT1176437). B.W.M. reports consultancy for ObsEva, and research grants from Merck KGaA, Ferring and Guerbet. The other authors have no conflict of interest to declare.
KW - ambient temperature
KW - clinical pregnancy
KW - in vitro fertilization
KW - live birth
KW - retrospective cohort study
UR - http://www.scopus.com/inward/record.url?scp=85178661675&partnerID=8YFLogxK
U2 - 10.1093/humrep/dead192
DO - 10.1093/humrep/dead192
M3 - Article
C2 - 37759343
AN - SCOPUS:85178661675
SN - 0268-1161
VL - 38
SP - 2489
EP - 2498
JO - Human Reproduction
JF - Human Reproduction
IS - 12
ER -