Abstract
Hydraulic conductivity of granular filter media and its evolution over time is a key design parameter for stormwater filtration and infiltration systems that are now widely used in management of polluted urban runoff. In fact, clogging of filter media is recognised as the main limiting factor of these stormwater treatment systems. This paper focuses on the effect of stormwater characteristics on the clogging of stormwater filters. Effect of five different operational regimes has been tested in this study of sediment concentration; pollutant concentrations; stormwater sediment size; loading rate and stormwater loading/dosing regime and compared with the Base case. For each operational condition, five column replicates were tested. Results suggest that sediment concentration in stormwater is a significant parameter affecting hydraulic and treatment performance, eventually affecting longevity of these stormwater treatment systems. Further, the size of sediments (and their relation to the size of filter media grains) in stormwater was found to be an important parameter to be considered in design of coarse filters with high infiltration rates that are used for stormwater treatment. As expected, the addition of metals and nutrients had limited or no contribution to changes in hydraulic or sediment removal performance of the studied stormwater filters. Whilst loading rate was found to be an important parameter affecting the hydraulic and treatment performance of these systems, any variation in the stormwater loading regime had a limited effect on their performance. This study therefore develops an understanding of the effect of catchment characteristics on design of filters and hence their longevity and maintenance needs.
Original language | English |
---|---|
Pages (from-to) | 1031 - 1048 |
Number of pages | 18 |
Journal | Water Resources Management |
Volume | 29 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- stormwater
- filter media
- hydraulic conductivity.
- clogging
- sediment treatment
- hydraulic permeability.
- infiltration