Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations

Shahid Iqbal, Fuyi Li, Tatsuya Akutsu, David B. Ascher, Geoffrey I. Webb, Jiangning Song

Research output: Contribution to journalArticleResearchpeer-review

24 Citations (Scopus)


Understanding how a mutation might affect protein stability is of significant importance to protein engineering and for understanding protein evolution genetic diseases. While a number of computational tools have been developed to predict the effect of missense mutations on protein stability protein stability upon mutations, they are known to exhibit large biases imparted in part by the data used to train and evaluate them. Here, we provide a comprehensive overview of predictive tools, which has provided an evolving insight into the importance and relevance of features that can discern the effects of mutations on protein stability. A diverse selection of these freely available tools was benchmarked using a large mutation-level blind dataset of 1342 experimentally characterised mutations across 130 proteins from ThermoMutDB, a second test dataset encompassing 630 experimentally characterised mutations across 39 proteins from iStable2.0 and a third blind test dataset consisting of 268 mutations in 27 proteins from the newly published ProThermDB. The performance of the methods was further evaluated with respect to the site of mutation, type of mutant residue and by ranging the pH and temperature. Additionally, the classification performance was also evaluated by classifying the mutations as stabilizing (∆∆G ≥ 0) or destabilizing (∆∆G < 0). The results reveal that the performance of the predictors is affected by the site of mutation and the type of mutant residue. Further, the results show very low performance for pH values 6-8 and temperature higher than 65 for all predictors except iStable2.0 on the S630 dataset. To illustrate how stability and structure change upon single point mutation, we considered four stabilizing, two destabilizing and two stabilizing mutations from two proteins, namely the toxin protein and bovine liver cytochrome. Overall, the results on S268, S630 and S1342 datasets show that the performance of the integrated predictors is better than the mechanistic or individual machine learning predictors. We expect that this paper will provide useful guidance for the design and development of next-generation bioinformatic tools for predicting protein stability changes upon mutations.

Original languageEnglish
Article numberbbab184
Number of pages23
JournalBriefings in Bioinformatics
Issue number6
Publication statusPublished - Nov 2021


  • bioinformatics
  • deep learning
  • feature engineering
  • machine learning
  • predictors
  • protein stability change

Cite this