Assessing respiratory mechanics using pressure reconstruction method in mechanically ventilated spontaneous breathing patient

Nor Salwa Damanhuri, Yeong Shiong Chiew, Nor Azlan Othman, Paul D. Docherty, Christopher G. Pretty, Geoffrey M. Shaw, Thomas Desaive, J. Geoffrey Chase

    Research output: Contribution to journalArticleResearchpeer-review

    18 Citations (Scopus)


    Background: Respiratory system modelling can aid clinical decision making during mechanical ventilation (MV) in intensive care. However, spontaneous breathing (SB) efforts can produce entrained "M-wave" airway pressure waveforms that inhibit identification of accurate values for respiratory system elastance and airway resistance. A pressure wave reconstruction method is proposed to accurately identify respiratory mechanics, assess the level of SB effort, and quantify the incidence of SB effort without uncommon measuring devices or interruption to care. Methods: Data from 275 breaths aggregated from all mechanically ventilated patients at Christchurch Hospital were used in this study. The breath specific respiratory elastance is calculated using a time-varying elastance model. A pressure reconstruction method is proposed to reconstruct pressure waves identified as being affected by SB effort. The area under the curve of the time-varying respiratory elastance (AUC Edrs) are calculated and compared, where unreconstructed waves yield lower AUC Edrs. The difference between the reconstructed and unreconstructed pressure is denoted as a surrogate measure of SB effort. Results: The pressure reconstruction method yielded a median AUC Edrs of 19.21 [IQR: 16.30-22.47] cmH2O s/l. In contrast, the median AUC Edrs for unreconstructed M-wave data was 20.41 [IQR: 16.68-22.81] cmH2O s/l. The pressure reconstruction method had the least variability in AUC Edrs assessed by the robust coefficient of variation (RCV) = 0.04 versus 0.05 for unreconstructed data. Each patient exhibited different levels of SB effort, independent from MV setting, indicating the need for non-invasive, real time assessment of SB effort. Conclusion: A simple reconstruction method enables more consistent real-time estimation of the true, underlying respiratory system mechanics of a SB patient and provides the surrogate of SB effort, which may be clinically useful for clinicians in determining optimal ventilator settings to improve patient care.

    Original languageEnglish
    Pages (from-to)175-185
    Number of pages11
    JournalComputer Methods and Programs in Biomedicine
    Publication statusPublished - Jul 2016


    • Airway pressure reconstruction
    • ARDS
    • Asynchrony
    • Mechanical ventilation
    • Respiratory mathematical modelling
    • Spontaneous breathing

    Cite this