Assembly of surface-independent polyphenol/liquid gallium composite nanocoatings

Franco Centurion, Md Musfizur Hassan, Jianbo Tang, Francois Marie Allioux, Sudip Chakraborty, Renxun Chen, Guangzhao Mao, Naresh Kumar, Kourosh Kalantar-Zadeh, Md Arifur Rahim

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)

Abstract

The development of functional nanocoatings using natural compounds is a hallmark of sustainable strategies in the field of green synthesis. Herein, we report a surface-independent nanocoating strategy using natural polyphenols and gallium-based room temperature liquid metal nanoparticles. The nanocoating matrix is composed of tannic acid, crosslinked with group (IV) transition metal ions. Liquid gallium nanoparticles are incorporated into the coatings as a gallium ion releasing depot. The coating deposition is rapid and can be applied to a range of substrates including glass, plastics, paper, and metal surfaces, owing to the versatile adhesive nature of the catechol/gallol functional groups of tannic acid. The coating thickness can be controlled from 100 to 700 nm and the content of liquid gallium nanoparticles can be modulated. This enables the tunable release behaviour of gallium ions into the surrounding from the composite coatings. The coatings are highly biocompatible and display antioxidant and antibacterial properties that can be useful for diverse applications.

Original languageEnglish
Pages (from-to)14760-14769
Number of pages10
JournalNanoscale
Volume14
Issue number39
DOIs
Publication statusPublished - 12 Sept 2022
Externally publishedYes

Cite this