AQD: towards accurate quantized object detection

Peng Chen, Jing Liu, Bohan Zhuang, Mingkui Tan, Chunhua Shen

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

28 Citations (Scopus)

Abstract

Network quantization allows inference to be conducted using low-precision arithmetic for improved inference efficiency of deep neural networks on edge devices. However, designing aggressively low-bit (e.g., 2-bit) quantization schemes on complex tasks, such as object detection, still remains challenging in terms of severe performance degradation and unverifiable efficiency on common hardware. In this paper, we propose an Accurate Quantized object Detection solution, termed AQD, to fully get rid of floating-point computation. To this end, we target using fixed-point operations in all kinds of layers, including the convolutional layers, normalization layers, and skip connections, allowing the inference to be executed using integer-only arithmetic. To demonstrate the improved latency-vs-accuracy trade-off, we apply the proposed methods on RetinaNet and FCOS. In particular, experimental results on MS-COCO dataset show that our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes, which is of great practical value. Source code and models are available at: https://github.com/aim-uofa/model-quantization.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
EditorsMargaux Masson-Forsythe, Eric Mortensen
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages104-113
Number of pages10
ISBN (Electronic)9781665445092
ISBN (Print)9781665445108
DOIs
Publication statusPublished - 2021
EventIEEE Conference on Computer Vision and Pattern Recognition 2021 - Online, Virtual, Online, United States of America
Duration: 19 Jun 202125 Jun 2021
https://cvpr2021.thecvf.com/ (Website)
https://ieeexplore.ieee.org/xpl/conhome/9577055/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublisherIEEE, Institute of Electrical and Electronics Engineers
ISSN (Print)1063-6919
ISSN (Electronic)2575-7075

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition 2021
Abbreviated titleCVPR 2021
Country/TerritoryUnited States of America
CityVirtual, Online
Period19/06/2125/06/21
Internet address

Cite this