TY - JOUR
T1 - Approaches to quantifying and visualizing polyelectrolyte multilayer film formation on particles
AU - Johnston, Angus P R
AU - Zelikin, Alexander N.
AU - Lee, Lillian
AU - Caruso, Frank
PY - 2006/8/15
Y1 - 2006/8/15
N2 - Colloidal particles prepared by using the layer-by-layer technique are increasingly finding application in diagnostics, drug delivery, and sensing. Herein, we outline methods for applying three established techniques, confocal laser scanning microscopy (CLSM), flow cytometry, and differential interference contrast (DIC) microscopy, to characterize ultrathin films of poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) assembled on silica particles. Both CLSM and flow cytometry require the use of fluorescently labeled polyelectrolytes (PEs). The film homogeneity can be assessed using CLSM, while flow cytometry allows analysis at unparalleled speed (thousands of particles per second) with unprecedented sensitivity (<0.5 fg of adsorbed polymer) of polydispersed particles of different size (∼300 nm to tens of micrometers). Using CLSM and flow cytometry measurements, in conjunction with quartz crystal microgravimetry measurements on planar supports, allows quantification of PSS/PAH layer buildup on the particles. Furthermore, flow cytometry and DIC microscopy were used to unequivocally distinguish between silica-core PSS/PAH-shell particles and hollow PSS/PAH capsules obtained following core removal. The techniques outlined here are not limited to measuring PE deposition on solid particles but, in principle, are equally applicable to quantifying the adsorption of other materials (such as DNA, proteins, or nanoparticles) on a variety of particulate systems, including hollow capsules, emulsions, and cells.
AB - Colloidal particles prepared by using the layer-by-layer technique are increasingly finding application in diagnostics, drug delivery, and sensing. Herein, we outline methods for applying three established techniques, confocal laser scanning microscopy (CLSM), flow cytometry, and differential interference contrast (DIC) microscopy, to characterize ultrathin films of poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) assembled on silica particles. Both CLSM and flow cytometry require the use of fluorescently labeled polyelectrolytes (PEs). The film homogeneity can be assessed using CLSM, while flow cytometry allows analysis at unparalleled speed (thousands of particles per second) with unprecedented sensitivity (<0.5 fg of adsorbed polymer) of polydispersed particles of different size (∼300 nm to tens of micrometers). Using CLSM and flow cytometry measurements, in conjunction with quartz crystal microgravimetry measurements on planar supports, allows quantification of PSS/PAH layer buildup on the particles. Furthermore, flow cytometry and DIC microscopy were used to unequivocally distinguish between silica-core PSS/PAH-shell particles and hollow PSS/PAH capsules obtained following core removal. The techniques outlined here are not limited to measuring PE deposition on solid particles but, in principle, are equally applicable to quantifying the adsorption of other materials (such as DNA, proteins, or nanoparticles) on a variety of particulate systems, including hollow capsules, emulsions, and cells.
UR - http://www.scopus.com/inward/record.url?scp=33747589244&partnerID=8YFLogxK
U2 - 10.1021/ac060765a
DO - 10.1021/ac060765a
M3 - Article
AN - SCOPUS:33747589244
VL - 78
SP - 5913
EP - 5919
JO - Analytical Chemistry
JF - Analytical Chemistry
SN - 0003-2700
IS - 16
ER -