Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species

Siu Kuin Wong, Yau Yan Lim, Noor Abdullah, Fariza Nordin

    Research output: Contribution to journalArticleResearchpeer-review

    26 Citations (Scopus)

    Abstract

    The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves. In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin-Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells. Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation.
    Original languageEnglish
    Pages (from-to)100 - 106
    Number of pages7
    JournalPharmacognosy Research
    Volume3
    Issue number2
    DOIs
    Publication statusPublished - 2011

    Cite this