Abstract
Hybrid nanoparticles show considerable promise with potential applications ranging across catalysis (including photocatalysis), energy conversion, and storage. A generalized synthetic procedure for hybrid nanoparticles is presented. The method offers the flexibility to drive the products toward different hybrid nanostructure morphologies merely via a change in the metal anion, under otherwise identical experimental conditions. Both Ag@CZTS (CZTS = Cu2ZnSnS4) core-shell nanoparticles and Ag2S-CZTS Janus nanoparticles, along with PbS and Au/AuAg hybrid analogues, are synthesized using this methodology, highlighting its versatility and translatability across different materials. The nucleation of the semiconductor is the critical determining step for the synthesis of a given hybrid product. Insight into the mechanism of growth for these two morphologies paves the way for the rational and generalized synthesis of hybrid nanoparticles.
Original language | English |
---|---|
Pages (from-to) | 8987-8998 |
Number of pages | 12 |
Journal | Chemistry of Materials |
Volume | 34 |
Issue number | 19 |
DOIs | |
Publication status | Published - 11 Oct 2022 |
Equipment
-
Centre for Electron Microscopy (MCEM)
Peter Miller (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility
-
X-ray Platform (MXP)
Ji Sheng Ma (Manager)
Materials Science & EngineeringFacility/equipment: Facility