Analyzing Students' Academic Performance through Educational Data Mining

Sana B., Isma Farah Siddiqui, Qasim Ali Arain

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Predicting students' performance is a very important task in any educational system. Therefore, to predict the learner's behavior towards studies many data mining techniques are used like clustering, classification, regression. In this paper, new student's performance prediction model and new features are introduced that have a great influence on student's academic achievement ie student days absence in class and parents' involvement in the learning process. In this paper, considerable attention is on the punctuality of students and the effect of participation of parents in the learning process. This category of features is concerned with the learner's interaction with the e–learning management system. Three different classifiers such as Naive Bayes, Decision Tree, and Artificial Neural Network are used to examine the effect of these features on students' educational performance. The accuracy of the proposed model achieved up to 10% to 15% and is much improved as compared to the results when such features are removed.
Original languageEnglish
Pages (from-to)403-421
Number of pages19
Journal 3c Tecnologia
VolumeMay 2019
DOIs
Publication statusPublished - 17 May 2019
Externally publishedYes

Keywords

  • Educational data mining
  • Students' performance prediction model
  • Artificial neural network.

Cite this